# Copyright 2024 The YourMT3 Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Please see the details in the LICENSE file. # ============================================================================== # Copyright 2018 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy from typing import Optional, Tuple, Union, Dict from einops import rearrange from model.ops import count_parameters import torch from torch import nn from torch.utils.checkpoint import checkpoint from transformers.utils import logging from transformers.utils.model_parallel_utils import assert_device_map, get_device_map from transformers.models.t5.modeling_t5 import (T5LayerNorm, T5LayerSelfAttention, T5LayerCrossAttention, T5LayerFF) from transformers.modeling_outputs import (BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions) from transformers import T5Config, T5PreTrainedModel from model.positional_encoding import FixedSinusoidalPositionalEmbedding from model.ff_layer import get_ff_layer logger = logging.get_logger(__name__) class T5BlockYMT3(nn.Module): """T5 Block, modified to allow using different types of FF layers.""" def __init__(self, config, has_relative_attention_bias=False): super().__init__() self.is_decoder = config.is_decoder self.layer = nn.ModuleList() self.layer.append(T5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias)) if self.is_decoder: self.layer.append(T5LayerCrossAttention(config)) # FF layer if config.ff_layer_type == 't5_gmlp': self.layer.append(T5LayerFF(config)) elif config.ff_layer_type == 'moe': config.moe_num_experts = 8 config.moe_topk = 2 config.hidden_act = 'silu' moe = get_ff_layer(config, input_size=config.d_model, widening_factor=config.ff_widening_factor) self.layer.append(moe) else: raise ValueError(f"Unknown FF layer type: {config.ff_layer_type}.") self.ff_layer_type = config.ff_layer_type def forward( self, hidden_states, attention_mask=None, position_bias=None, encoder_hidden_states=None, encoder_attention_mask=None, encoder_decoder_position_bias=None, layer_head_mask=None, cross_attn_layer_head_mask=None, past_key_value=None, use_cache=False, output_attentions=False, return_dict=True, ): if past_key_value is not None: if not self.is_decoder: logger.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.") expected_num_past_key_values = 2 if encoder_hidden_states is None else 4 if len(past_key_value) != expected_num_past_key_values: raise ValueError( f"There should be {expected_num_past_key_values} past states. " f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}" f"Got {len(past_key_value)} past key / value states") self_attn_past_key_value = past_key_value[:2] cross_attn_past_key_value = past_key_value[2:] else: self_attn_past_key_value, cross_attn_past_key_value = None, None self_attention_outputs = self.layer[0]( hidden_states, attention_mask=attention_mask, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=self_attn_past_key_value, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states, present_key_value_state = self_attention_outputs[:2] attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights # clamp inf values to enable fp16 training if hidden_states.dtype == torch.float16: clamp_value = torch.where( torch.isinf(hidden_states).any(), torch.finfo(hidden_states.dtype).max - 1000, torch.finfo(hidden_states.dtype).max, ) hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) do_cross_attention = self.is_decoder and encoder_hidden_states is not None if do_cross_attention: # the actual query length is unknown for cross attention # if using past key value states. Need to inject it here if present_key_value_state is not None: query_length = present_key_value_state[0].shape[2] else: query_length = None cross_attention_outputs = self.layer[1]( hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, position_bias=encoder_decoder_position_bias, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, query_length=query_length, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = cross_attention_outputs[0] # clamp inf values to enable fp16 training if hidden_states.dtype == torch.float16: clamp_value = torch.where( torch.isinf(hidden_states).any(), torch.finfo(hidden_states.dtype).max - 1000, torch.finfo(hidden_states.dtype).max, ) hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) # Combine self attn and cross attn key value states if present_key_value_state is not None: present_key_value_state = present_key_value_state + cross_attention_outputs[1] # Keep cross-attention outputs and relative position weights attention_outputs = attention_outputs + cross_attention_outputs[2:] # Apply Feed Forward layer - Modified for MoE if self.ff_layer_type == 't5_gmlp': hidden_states = self.layer[-1](hidden_states) elif self.ff_layer_type == 'moe': hidden_states = hidden_states + self.layer[-1](hidden_states)[0] # residual connection outside the MoE else: raise ValueError(f"Unknown FF layer type: {self.ff_layer_type}.") # clamp inf values to enable fp16 training if hidden_states.dtype == torch.float16: clamp_value = torch.where( torch.isinf(hidden_states).any(), torch.finfo(hidden_states.dtype).max - 1000, torch.finfo(hidden_states.dtype).max, ) hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if use_cache: outputs = outputs + (present_key_value_state,) + attention_outputs else: outputs = outputs + attention_outputs return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) class T5StackYMT3(T5PreTrainedModel): """ T5Stack, modified for YMT3 with: - absolute sinusoidal absolute positional encoding """ def __init__( self, config, ): super().__init__(config) self.is_decoder = config.is_decoder # Positional encoding (modified) self.use_t5_trainable_pe = False self.additive_pe = None pos_enc_type = getattr(config, 'position_encoding_type', 'sinusoidal') if pos_enc_type in ['sinusoidal']: self.additive_pe = FixedSinusoidalPositionalEmbedding(config.num_max_positions, embedding_dim=config.d_model) self.block = nn.ModuleList( [T5BlockYMT3(config, has_relative_attention_bias=False) for i in range(config.num_layers)]) elif pos_enc_type == 'trainable': self.use_t5_trainable_pe = True # Stack blocks self.block = nn.ModuleList( [T5BlockYMT3(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)]) self.final_layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) # Initialize weights and apply final processing self.post_init() # Model parallel self.gradient_checkpointing = False def forward( self, # input_ids=None, inputs_embeds=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): use_cache = use_cache if use_cache is not None else self.config.use_cache output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = (output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: err_msg_prefix = "decoder_" if self.is_decoder else "" raise ValueError(f"You have to specify {err_msg_prefix}inputs_embeds") batch_size, seq_length = input_shape # required mask seq length can be calculated via length of past mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length # mod: required for additive PE past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if use_cache is True: assert self.is_decoder, f"`use_cache` can only be set to `True` if {self} is used as a decoder" if attention_mask is None: attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device) if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None: encoder_seq_length = encoder_hidden_states.shape[1] encoder_attention_mask = torch.ones(batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long) # initialize past_key_values with `None` if past does not exist if past_key_values is None: past_key_values = [None] * len(self.block) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...") use_cache = False # Prepare head mask if needed head_mask = self.get_head_mask(head_mask, self.config.num_layers) cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers) present_key_value_states = () if use_cache else None all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None all_cross_attentions = () if (output_attentions and self.is_decoder) else None position_bias = None encoder_decoder_position_bias = None # mod: additive absolute PE (sinusoidal) if self.additive_pe is not None: inputs_embeds = inputs_embeds + self.additive_pe(inputs_embeds.shape[1], past_key_values_length) else: pass # trinable PE is implemented in T5Block hidden_states = self.dropout(inputs_embeds) for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)): layer_head_mask = head_mask[i] cross_attn_layer_head_mask = cross_attn_head_mask[i] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return tuple(module(*inputs, use_cache, output_attentions)) return custom_forward layer_outputs = checkpoint( create_custom_forward(layer_module), hidden_states, extended_attention_mask, position_bias, encoder_hidden_states, encoder_extended_attention_mask, encoder_decoder_position_bias, layer_head_mask, cross_attn_layer_head_mask, None, # past_key_value is always None with gradient checkpointing ) else: layer_outputs = layer_module( hidden_states, attention_mask=extended_attention_mask, position_bias=position_bias, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, encoder_decoder_position_bias=encoder_decoder_position_bias, layer_head_mask=layer_head_mask, cross_attn_layer_head_mask=cross_attn_layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, output_attentions=output_attentions, ) # layer_outputs is a tuple with: # hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) if use_cache is False: layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] hidden_states, present_key_value_state = layer_outputs[:2] # We share the position biases between the layers - the first layer store them # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights), # (cross-attention position bias), (cross-attention weights) position_bias = layer_outputs[2] if self.is_decoder and encoder_hidden_states is not None: encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3] # append next layer key value states if use_cache: present_key_value_states = present_key_value_states + (present_key_value_state,) if output_attentions: all_attentions = all_attentions + (layer_outputs[3],) if self.is_decoder: all_cross_attentions = all_cross_attentions + (layer_outputs[5],) hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.dropout(hidden_states) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [ hidden_states, present_key_value_states, all_hidden_states, all_attentions, all_cross_attentions, ] if v is not None) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=present_key_value_states, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) class T5EncoderYMT3(T5PreTrainedModel): # _keys_to_ignore_on_load_missing = [r"encoder.embed_tokens.weight"] def __init__(self, encoder_config: Optional[Dict] = None, config: Optional[T5Config] = None): if config is None: config = T5Config() if encoder_config is not None: config = copy.deepcopy(config) config.update(encoder_config) if hasattr(config, "ff_widening_factor"): config.d_ff = int(config.d_model) * int(config.ff_widening_factor) config.is_decoder = False config.use_cache = False config.is_encoder_decoder = False super().__init__(config) self.model_dim = config.d_model self.encoder = T5StackYMT3(config) # Initialize weights and apply final processing self.post_init() """temporary fix for torch.compile issue""" def forward(self, **kwargs): if self.training is True: return self._forward_compile(**kwargs) else: return self._forward_no_compile(**kwargs) def _forward_no_compile(self, **kwargs): return self._forward(**kwargs) @torch.compile def _forward_compile(self, **kwargs): return self._forward(**kwargs) def _forward( self, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Encode encoder_outputs = self.encoder( inputs_embeds=inputs_embeds, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return encoder_outputs else: return BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) class T5DecoderYMT3(T5PreTrainedModel): def __init__(self, decoder_config: Optional[Dict] = None, config: Optional[T5Config] = None): if config is None: config = T5Config() if decoder_config is not None: config = copy.deepcopy(config) config.update(decoder_config) if hasattr(config, "ff_widening_factor"): config.d_ff = int(config.d_model) * int(config.ff_widening_factor) config.is_decoder = True config.is_encoder_decoder = False super().__init__(config) self.model_dim = config.d_model self.decoder = T5StackYMT3(config) # Initialize weights and apply final processing self.post_init() """temporary fix for torch.compile issue""" def forward(self, **kwargs): if self.training is True: return self._forward_compile(**kwargs) else: return self._forward_no_compile(**kwargs) def _forward_no_compile(self, **kwargs): return self._forward(**kwargs) @torch.compile def _forward_compile(self, **kwargs): return self._forward(**kwargs) def _forward( self, # input_ids: torch.LongTensor, # removed since embed_tokens is outside the decoder inputs_embeds: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, # decoder_attention_mask encoder_attention_mask: Optional[torch.FloatTensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], BaseModelOutputWithPastAndCrossAttentions]: use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if isinstance(encoder_hidden_states, BaseModelOutput): encoder_hidden_states = encoder_hidden_states.last_hidden_state # Decode decoder_outputs = self.decoder( inputs_embeds=inputs_embeds, attention_mask=attention_mask, past_key_values=past_key_values, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs else: return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=decoder_outputs[0], past_key_values=decoder_outputs[1], hidden_states=decoder_outputs[2] if len(decoder_outputs) > 2 else None, attentions=decoder_outputs[3] if len(decoder_outputs) > 3 else None, cross_attentions=decoder_outputs[4] if len(decoder_outputs) > 4 else None, ) class MultiChannelT5Decoder(T5PreTrainedModel): def __init__(self, decoder_config: Optional[Dict] = None, config: Optional[T5Config] = None): if config is None: config = T5Config() if decoder_config is not None: config = copy.deepcopy(config) config.update(decoder_config) if hasattr(config, "ff_widening_factor"): config.d_ff = int(config.d_model) * int(config.ff_widening_factor) config.is_decoder = True config.is_encoder_decoder = False super().__init__(config) self.model_dim = config.d_model self.decoder = T5StackYMT3(config) # Multi-channel parameters self.num_channels = config.num_channels # Initialize weights and apply final processing self.post_init() """temporary fix for torch.compile issue""" def forward(self, **kwargs): if self.training is True: return self._forward_compile(**kwargs) else: return self._forward_no_compile(**kwargs) def _forward_no_compile(self, **kwargs): return self._forward(**kwargs) @torch.compile def _forward_compile(self, **kwargs): return self._forward(**kwargs) def _forward( self, # input_ids: torch.LongTensor, # removed since embed_tokens is outside the decoder inputs_embeds: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, # decoder_attention_mask encoder_attention_mask: Optional[torch.FloatTensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], BaseModelOutputWithPastAndCrossAttentions]: use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict """ Args: inputs_embeds: torch.FloatTensor (B, K, T, D), where K is the number of channels encoder_hidden_states: torch.FloatTensor (B, K, T, D), where K is the number of channels Returns: decoder_outputs: BaseModelOutputWithPastAndCrossAttentions last_hidden_state: torch.FloatTensor (B, K, T, D), where K is the number of channels past_key_values: Tuple[Tuple[torch.Tensor]] hidden_states: Tuple[torch.FloatTensor] attentions: Tuple[torch.FloatTensor] cross_attentions: Tuple[torch.FloatTensor] """ if isinstance(encoder_hidden_states, BaseModelOutput): encoder_hidden_states = encoder_hidden_states.last_hidden_state # Reshape input_embeds and encoder_hidden_states b, k, t, d = inputs_embeds.size() inputs_embeds = rearrange(inputs_embeds, 'b k t d -> (b k) t d') encoder_hidden_states = rearrange(encoder_hidden_states, 'b k t d -> (b k) t d') # K-channel Decoding decoder_outputs = self.decoder( inputs_embeds=inputs_embeds, attention_mask=attention_mask, past_key_values=past_key_values, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) # Reshape decoder_outputs decoder_outputs['last_hidden_state'] = rearrange(decoder_outputs['last_hidden_state'], '(b k) t d -> b k t d', b=b, k=k) if not return_dict: # Collecting values from decoder_outputs in a specific order outputs = ( decoder_outputs['last_hidden_state'], decoder_outputs.get('past_key_values', None), decoder_outputs.get('hidden_states', None), decoder_outputs.get('attentions', None), decoder_outputs.get('cross_attentions', None), ) return tuple(v for v in outputs if v is not None) else: return decoder_outputs # ['last_hidden_state']: (B, K, T, D) def test_multi_channel_t5_decoder(): # Test multi-channel decoder config = T5Config() config.num_channels = 4 config.d_model = 32 config.num_layers = 2 config.num_heads = 2 config.num_max_positions = 64 # for positional encoding decoder = MultiChannelT5Decoder(decoder_config=None, config=config) decoder.eval() input_emb = torch.rand(2, 4, 64, 32) # (B, K, T, D) enc_hs = torch.rand(2, 4, 64, 32) # (B, K, T, D) out = decoder(inputs_embeds=input_emb, encoder_hidden_states=enc_hs, return_dict=True) # out['last_hidden_state']: (B, K, T, D) # out['past_key_values']: Tuple[Tuple[torch.Tensor]]