# Copyright 2024 The YourMT3 Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Please see the details in the LICENSE file. from typing import Tuple, Literal, Any, Optional import math import torch from torch import nn from transformers.activations import ACT2FN from transformers.modeling_outputs import BaseModelOutput from model.conformer_helper import ConformerYMT3Config, ConformerYMT3PreTrainedModel from model.positional_encoding import (Wav2Vec2ConformerRelPositionalEmbedding, Wav2Vec2ConformerRotaryPositionalEmbedding) class ConformerYMT3FeedForward(nn.Module): def __init__(self, config): super().__init__() self.intermediate_dropout = nn.Dropout(config.dropout_rate) self.intermediate_dense = nn.Linear(config.d_model, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act self.output_dense = nn.Linear(config.intermediate_size, config.d_model) self.output_dropout = nn.Dropout(config.dropout_rate) def forward(self, hidden_states): hidden_states = self.intermediate_dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.intermediate_dropout(hidden_states) hidden_states = self.output_dense(hidden_states) hidden_states = self.output_dropout(hidden_states) return hidden_states class ConformerYMT3ConvolutionModule(nn.Module): """Convolution block used in the conformer block""" def __init__(self, config): super().__init__() if (config.conv_depthwise_kernel_size - 1) % 2 == 1: raise ValueError("`config.conv_depthwise_kernel_size` should be a odd number for 'SAME' padding") self.layer_norm = nn.LayerNorm(config.d_model) self.pointwise_conv1 = torch.nn.Conv1d( config.d_model, 2 * config.d_model, kernel_size=1, stride=1, padding=0, bias=False, ) self.glu = torch.nn.GLU(dim=1) self.depthwise_conv = torch.nn.Conv1d( config.d_model, config.d_model, config.conv_depthwise_kernel_size, stride=1, padding=(config.conv_depthwise_kernel_size - 1) // 2, groups=config.d_model, bias=False, ) self.batch_norm = torch.nn.BatchNorm1d(config.d_model) self.activation = ACT2FN[config.hidden_act] self.pointwise_conv2 = torch.nn.Conv1d( config.d_model, config.d_model, kernel_size=1, stride=1, padding=0, bias=False, ) self.dropout = torch.nn.Dropout(config.dropout_rate) def forward(self, hidden_states): hidden_states = self.layer_norm(hidden_states) # exchange the temporal dimension and the feature dimension hidden_states = hidden_states.transpose(1, 2) # GLU mechanism # => (batch, 2*channel, dim) hidden_states = self.pointwise_conv1(hidden_states) # => (batch, channel, dim) hidden_states = self.glu(hidden_states) # 1D Depthwise Conv hidden_states = self.depthwise_conv(hidden_states) hidden_states = self.batch_norm(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.pointwise_conv2(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states class ConformerYMT3SelfAttention(nn.Module): """Construct a ConformerSelfAttention object. Can be enhanced with rotary or relative position embeddings. """ def __init__(self, config): super().__init__() self.head_size = config.d_model // config.num_heads self.num_heads = config.num_heads self.position_encoding_type = config.position_encoding_type self.linear_q = nn.Linear(config.d_model, config.d_model) self.linear_k = nn.Linear(config.d_model, config.d_model) self.linear_v = nn.Linear(config.d_model, config.d_model) self.linear_out = nn.Linear(config.d_model, config.d_model) self.dropout = nn.Dropout(p=config.dropout_rate) if self.position_encoding_type == "relative": # linear transformation for positional encoding self.linear_pos = nn.Linear(config.d_model, config.d_model, bias=False) # these two learnable bias are used in matrix c and matrix d # as described in https://arxiv.org/abs/1901.02860 Section 3.3 self.pos_bias_u = nn.Parameter(torch.zeros(self.num_heads, self.head_size)) self.pos_bias_v = nn.Parameter(torch.zeros(self.num_heads, self.head_size)) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, relative_position_embeddings: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: # self-attention mechanism batch_size, sequence_length, d_model = hidden_states.size() # make sure query/key states can be != value states query_key_states = hidden_states value_states = hidden_states if self.position_encoding_type == "rotary": if relative_position_embeddings is None: raise ValueError( "`relative_position_embeddings` has to be defined when `self.position_encoding_type == 'rotary'") query_key_states = self._apply_rotary_embedding(query_key_states, relative_position_embeddings) # project query_key_states and value_states query = self.linear_q(query_key_states).view(batch_size, -1, self.num_heads, self.head_size) key = self.linear_k(query_key_states).view(batch_size, -1, self.num_heads, self.head_size) value = self.linear_v(value_states).view(batch_size, -1, self.num_heads, self.head_size) # => (batch, head, time1, d_k) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) if self.position_encoding_type == "relative": if relative_position_embeddings is None: raise ValueError("`relative_position_embeddings` has to be defined when `self.position_encoding_type ==" " 'relative'") # apply relative_position_embeddings to qk scores # as proposed in Transformer_XL: https://arxiv.org/abs/1901.02860 scores = self._apply_relative_embeddings(query=query, key=key, relative_position_embeddings=relative_position_embeddings) else: scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.head_size) # apply attention_mask if necessary if attention_mask is not None: scores = scores + attention_mask # => (batch, head, time1, time2) probs = torch.softmax(scores, dim=-1) probs = self.dropout(probs) # => (batch, head, time1, d_k) hidden_states = torch.matmul(probs, value) # => (batch, time1, d_model) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_size) hidden_states = self.linear_out(hidden_states) return hidden_states, probs def _apply_rotary_embedding(self, hidden_states, relative_position_embeddings): batch_size, sequence_length, d_model = hidden_states.size() hidden_states = hidden_states.view(batch_size, sequence_length, self.num_heads, self.head_size) cos = relative_position_embeddings[0, :sequence_length, ...] sin = relative_position_embeddings[1, :sequence_length, ...] # rotate hidden_states with rotary embeddings hidden_states = hidden_states.transpose(0, 1) rotated_states_begin = hidden_states[..., :self.head_size // 2] rotated_states_end = hidden_states[..., self.head_size // 2:] rotated_states = torch.cat((-rotated_states_end, rotated_states_begin), dim=rotated_states_begin.ndim - 1) hidden_states = (hidden_states * cos) + (rotated_states * sin) hidden_states = hidden_states.transpose(0, 1) hidden_states = hidden_states.view(batch_size, sequence_length, self.num_heads * self.head_size) return hidden_states def _apply_relative_embeddings(self, query, key, relative_position_embeddings): # 1. project positional embeddings # => (batch, head, 2*time1-1, d_k) proj_relative_position_embeddings = self.linear_pos(relative_position_embeddings) proj_relative_position_embeddings = proj_relative_position_embeddings.view(relative_position_embeddings.size(0), -1, self.num_heads, self.head_size) proj_relative_position_embeddings = proj_relative_position_embeddings.transpose(1, 2) proj_relative_position_embeddings = proj_relative_position_embeddings.transpose(2, 3) # 2. Add bias to query # => (batch, head, time1, d_k) query = query.transpose(1, 2) q_with_bias_u = (query + self.pos_bias_u).transpose(1, 2) q_with_bias_v = (query + self.pos_bias_v).transpose(1, 2) # 3. attention score: first compute matrix a and matrix c # as described in https://arxiv.org/abs/1901.02860 Section 3.3 # => (batch, head, time1, time2) scores_ac = torch.matmul(q_with_bias_u, key.transpose(-2, -1)) # 4. then compute matrix b and matrix d # => (batch, head, time1, 2*time1-1) scores_bd = torch.matmul(q_with_bias_v, proj_relative_position_embeddings) # 5. shift matrix b and matrix d zero_pad = torch.zeros((*scores_bd.size()[:3], 1), device=scores_bd.device, dtype=scores_bd.dtype) scores_bd_padded = torch.cat([zero_pad, scores_bd], dim=-1) scores_bd_padded_shape = scores_bd.size()[:2] + (scores_bd.shape[3] + 1, scores_bd.shape[2]) scores_bd_padded = scores_bd_padded.view(*scores_bd_padded_shape) scores_bd = scores_bd_padded[:, :, 1:].view_as(scores_bd) scores_bd = scores_bd[:, :, :, :scores_bd.size(-1) // 2 + 1] # 6. sum matrices # => (batch, head, time1, time2) scores = (scores_ac + scores_bd) / math.sqrt(self.head_size) return scores class ConformerYMT3EncoderLayer(nn.Module): """Conformer block based on https://arxiv.org/abs/2005.08100.""" def __init__(self, config): super().__init__() embed_dim = config.d_model dropout = config.dropout_rate # Feed-forward 1 self.ffn1_layer_norm = nn.LayerNorm(embed_dim) self.ffn1 = ConformerYMT3FeedForward(config) # Self-Attention self.self_attn_layer_norm = nn.LayerNorm(embed_dim) self.self_attn_dropout = torch.nn.Dropout(dropout) self.self_attn = ConformerYMT3SelfAttention(config) # Conformer Convolution self.conv_module = ConformerYMT3ConvolutionModule(config) # Feed-forward 2 self.ffn2_layer_norm = nn.LayerNorm(embed_dim) self.ffn2 = ConformerYMT3FeedForward(config) self.final_layer_norm = nn.LayerNorm(embed_dim) def forward( self, hidden_states, attention_mask: Optional[torch.Tensor] = None, relative_position_embeddings: Optional[torch.Tensor] = None, output_attentions: bool = False, ): hidden_states = hidden_states # 1. Feed-Forward 1 layer residual = hidden_states hidden_states = self.ffn1_layer_norm(hidden_states) hidden_states = self.ffn1(hidden_states) hidden_states = hidden_states * 0.5 + residual residual = hidden_states # 2. Self-Attention layer hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weigts = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, relative_position_embeddings=relative_position_embeddings, output_attentions=output_attentions, ) hidden_states = self.self_attn_dropout(hidden_states) hidden_states = hidden_states + residual # 3. Convolutional Layer residual = hidden_states hidden_states = self.conv_module(hidden_states) hidden_states = residual + hidden_states # 4. Feed-Forward 2 Layer residual = hidden_states hidden_states = self.ffn2_layer_norm(hidden_states) hidden_states = self.ffn2(hidden_states) hidden_states = hidden_states * 0.5 + residual hidden_states = self.final_layer_norm(hidden_states) return hidden_states, attn_weigts class ConformerYMT3Encoder(nn.Module): def __init__(self, config): super().__init__() self.config = config if config.position_encoding_type == "relative": self.embed_positions = Wav2Vec2ConformerRelPositionalEmbedding(config) elif config.position_encoding_type == "rotary": self.embed_positions = Wav2Vec2ConformerRotaryPositionalEmbedding(config) else: self.embed_positions = None # self.pos_conv_embed = Wav2Vec2ConformerPositionalConvEmbedding(config) self.layer_norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.dropout_rate) self.layers = nn.ModuleList([ConformerYMT3EncoderLayer(config) for _ in range(config.num_layers)]) self.gradient_checkpointing = False def forward( self, inputs_embeds: torch.FloatTensor, # (B, T, D) attention_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ): if output_attentions is None: output_attentions = self.config.output_attentions if output_hidden_states is None: output_hidden_states = self.config.output_hidden_states if return_dict is None: return_dict = self.config.use_return_dict all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None # inputs_embeds as hidden_states hidden_states = inputs_embeds if attention_mask is not None: # make sure padded tokens output 0 hidden_states[~attention_mask] = 0.0 # extend attention_mask attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min attention_mask = attention_mask.expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]) hidden_states = self.dropout(hidden_states) if self.embed_positions is not None: relative_position_embeddings = self.embed_positions(hidden_states) else: relative_position_embeddings = None for i, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False if not skip_the_layer: # under deepspeed zero3 all gpus must run in sync if self.gradient_checkpointing and self.training: # create gradient checkpointing function def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer), hidden_states, attention_mask, relative_position_embeddings, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, relative_position_embeddings=relative_position_embeddings, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) def test(): import torch from model.conformer_mod import ConformerYMT3Encoder from model.conformer_helper import ConformerYMT3Config from model.ops import count_parameters config = ConformerYMT3Config() encoder = ConformerYMT3Encoder(config) encoder.eval() # num params: 48,468,992 w/ intermediate_size=2048 # num params: 23,278,592 w/ intermediate_size=512 x = torch.randn(2, 256, 512) # (B, T, D) enc_hs = encoder.forward(inputs_embeds=x)['last_hidden_state'] # (B, T, D)