"""rotary_embedding.py - Rotary Embedding based on https://github.com/lucidrains/rotary-embedding-torch""" from typing import Literal, Union, Optional from math import pi, log from einops import rearrange, repeat import torch from torch.nn import Module, ModuleList from torch.cuda.amp import autocast from torch import nn, einsum, broadcast_tensors, Tensor # helper functions def exists(val): return val is not None def default(val, d): return val if exists(val) else d # broadcat, as tortoise-tts was using it def broadcat(tensors, dim=-1): broadcasted_tensors = broadcast_tensors(*tensors) return torch.cat(broadcasted_tensors, dim=dim) # rotary embedding helper functions def rotate_half(x): x = rearrange(x, '... (d r) -> ... d r', r=2) x1, x2 = x.unbind(dim=-1) x = torch.stack((-x2, x1), dim=-1) return rearrange(x, '... d r -> ... (d r)') @autocast(enabled=False) def apply_rotary_emb(freqs, t, start_index=0, scale=1., seq_dim=-2): """Applies rotary embedding for pixels.""" if t.ndim == 3: seq_len = t.shape[seq_dim] freqs = freqs[-seq_len:].to(t) rot_dim = freqs.shape[-1] end_index = start_index + rot_dim assert rot_dim <= t.shape[ -1], f'feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}' t_left, t, t_right = t[..., :start_index], t[..., start_index:end_index], t[..., end_index:] t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale) return torch.cat((t_left, t, t_right), dim=-1) # learned rotation helpers def apply_learned_rotations(rotations, t, start_index=0, freq_ranges=None): if exists(freq_ranges): rotations = einsum('..., f -> ... f', rotations, freq_ranges) rotations = rearrange(rotations, '... r f -> ... (r f)') rotations = repeat(rotations, '... n -> ... (n r)', r=2) return apply_rotary_emb(rotations, t, start_index=start_index) # classes class RotaryEmbedding(Module): def __init__(self, dim, custom_freqs: Optional[Tensor] = None, freqs_for: Union[Literal['lang'], Literal['pixel'], Literal['constant']] = 'lang', theta=10000, max_freq=10, num_freqs=1, learned_freq=False, use_xpos=False, xpos_scale_base=512, interpolate_factor=1., theta_rescale_factor=1., seq_before_head_dim=False, cache_if_possible=True): super().__init__() # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning # has some connection to NTK literature # https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/ theta *= theta_rescale_factor**(dim / (dim - 2)) self.freqs_for = freqs_for if exists(custom_freqs): freqs = custom_freqs elif freqs_for == 'lang': freqs = 1. / (theta**(torch.arange(0, dim, 2)[:(dim // 2)].float() / dim)) elif freqs_for == 'pixel': freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi elif freqs_for == 'constant': freqs = torch.ones(num_freqs).float() self.cache_if_possible = cache_if_possible self.tmp_store('cached_freqs', None) self.tmp_store('cached_scales', None) self.freqs = nn.Parameter(freqs, requires_grad=learned_freq) self.learned_freq = learned_freq # dummy for device self.tmp_store('dummy', torch.tensor(0)) # default sequence dimension self.seq_before_head_dim = seq_before_head_dim self.default_seq_dim = -3 if seq_before_head_dim else -2 # interpolation factors assert interpolate_factor >= 1. self.interpolate_factor = interpolate_factor # xpos self.use_xpos = use_xpos if not use_xpos: self.tmp_store('scale', None) return scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim) self.scale_base = xpos_scale_base self.tmp_store('scale', scale) @property def device(self): return self.dummy.device def tmp_store(self, key, value): self.register_buffer(key, value, persistent=False) def get_seq_pos(self, seq_len, device, dtype, offset=0): return (torch.arange(seq_len, device=device, dtype=dtype) + offset) / self.interpolate_factor def rotate_queries_or_keys(self, t, seq_dim=None, offset=0, freq_seq_len=None): seq_dim = default(seq_dim, self.default_seq_dim) assert not self.use_xpos, 'you must use `.rotate_queries_and_keys` method instead and pass in both queries and keys, for length extrapolatable rotary embeddings' device, dtype, seq_len = t.device, t.dtype, t.shape[seq_dim] if exists(freq_seq_len): assert freq_seq_len >= seq_len seq_len = freq_seq_len freqs = self.forward(self.get_seq_pos(seq_len, device=device, dtype=dtype, offset=offset), seq_len=seq_len, offset=offset) if seq_dim == -3: freqs = rearrange(freqs, 'n d -> n 1 d') return apply_rotary_emb(freqs, t, seq_dim=seq_dim) def rotate_queries_with_cached_keys(self, q, k, seq_dim=None, offset=0): seq_dim = default(seq_dim, self.default_seq_dim) q_len, k_len = q.shape[seq_dim], k.shape[seq_dim] assert q_len <= k_len rotated_q = self.rotate_queries_or_keys(q, seq_dim=seq_dim, freq_seq_len=k_len) rotated_k = self.rotate_queries_or_keys(k, seq_dim=seq_dim) rotated_q = rotated_q.type(q.dtype) rotated_k = rotated_k.type(k.dtype) return rotated_q, rotated_k def rotate_queries_and_keys(self, q, k, seq_dim=None): seq_dim = default(seq_dim, self.default_seq_dim) assert self.use_xpos device, dtype, seq_len = q.device, q.dtype, q.shape[seq_dim] seq = self.get_seq_pos(seq_len, dtype=dtype, device=device) freqs = self.forward(seq, seq_len=seq_len) scale = self.get_scale(seq, seq_len=seq_len).to(dtype) if seq_dim == -3: freqs = rearrange(freqs, 'n d -> n 1 d') scale = rearrange(scale, 'n d -> n 1 d') rotated_q = apply_rotary_emb(freqs, q, scale=scale, seq_dim=seq_dim) rotated_k = apply_rotary_emb(freqs, k, scale=scale**-1, seq_dim=seq_dim) rotated_q = rotated_q.type(q.dtype) rotated_k = rotated_k.type(k.dtype) return rotated_q, rotated_k def get_scale(self, t: Tensor, seq_len: Optional[int] = None, offset=0): assert self.use_xpos should_cache = (self.cache_if_possible and exists(seq_len)) if ( should_cache and \ exists(self.cached_scales) and \ (seq_len + offset) <= self.cached_scales.shape[0] ): return self.cached_scales[offset:(offset + seq_len)] scale = 1. if self.use_xpos: power = (t - len(t) // 2) / self.scale_base scale = self.scale**rearrange(power, 'n -> n 1') scale = torch.cat((scale, scale), dim=-1) if should_cache: self.tmp_store('cached_scales', scale) return scale def get_axial_freqs(self, *dims): Colon = slice(None) all_freqs = [] for ind, dim in enumerate(dims): if self.freqs_for == 'pixel': pos = torch.linspace(-1, 1, steps=dim, device=self.device) else: pos = torch.arange(dim, device=self.device) freqs = self.forward(pos, seq_len=dim) all_axis = [None] * len(dims) all_axis[ind] = Colon new_axis_slice = (Ellipsis, *all_axis, Colon) all_freqs.append(freqs[new_axis_slice]) all_freqs = broadcast_tensors(*all_freqs) return torch.cat(all_freqs, dim=-1) @autocast(enabled=False) def forward(self, t: Tensor, seq_len=None, offset=0): should_cache = ( self.cache_if_possible and \ not self.learned_freq and \ exists(seq_len) and \ self.freqs_for != 'pixel' ) if ( should_cache and \ exists(self.cached_freqs) and \ (offset + seq_len) <= self.cached_freqs.shape[0] ): return self.cached_freqs[offset:(offset + seq_len)].detach() freqs = self.freqs freqs = einsum('..., f -> ... f', t.type(freqs.dtype), freqs) freqs = repeat(freqs, '... n -> ... (n r)', r=2) if should_cache: self.tmp_store('cached_freqs', freqs.detach()) return freqs # custom method for applying rotary embeddings @torch.compiler.disable def apply_rotary_custom(self, t: torch.Tensor): """Apply rotary embeddings to queries and keys, if k is None, only q is rotated. Depending on the freqs type, the rotation will be different.""" if self.freqs_for == 'lang': return self.rotate_queries_or_keys(t, seq_dim=-2) elif self.freqs_for == 'pixel': return apply_rotary_emb(self.get_axial_freqs(t.shape[-2]), t) else: raise ValueError(f"freqs_for must be 'lang' or 'pixel', but got {self.freqs_for}") def test_rotary_embedding_lang(): d = 32 # d by head q = torch.ones(1, 4, 110, 32) # (B, H, T, D) for multi-head attention rdim = d // 2 # will do a partial rotation on half, or d rotary = RotaryEmbedding(dim=rdim, freqs_for="lang") q = rotary.rotate_queries_or_keys(q, seq_dim=-2) # visualize import matplotlib.pyplot as plt plt.imshow(q[0, 0, :, :].numpy().T, origin='lower') def test_rotary_embedding_pixel(): d = 32 # d by head q = torch.ones(1, 4, 128, 32) # (B*T, H, F, C/H) for multi-head attention rdim = d // 2 # will do a partial rotation on half rotary = RotaryEmbedding(dim=rdim, freqs_for="pixel", max_freq=10) freqs = rotary.get_axial_freqs(128) q = apply_rotary_emb(freqs, q) # also k, if needed # visualize import matplotlib.pyplot as plt plt.imshow(q[0, 0, :, :].numpy().T, origin='lower')