mimireyburn commited on
Commit
376d41a
·
1 Parent(s): 726371d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -1
app.py CHANGED
@@ -1,12 +1,18 @@
1
  import gradio as gr
2
  import transformers as t
3
  import torch
 
4
 
5
  # Load your fine-tuned model and tokenizer
6
- model = t.AutoModelForCausalLM.from_pretrained("./weights")
7
  tokenizer = t.AutoTokenizer.from_pretrained("NousResearch/Llama-2-7b-hf")
 
8
  tokenizer.pad_token_id = 0
9
 
 
 
 
 
 
10
  # Define a prediction function
11
  def generate_article(title):
12
  prompt = f"Below is a title for an article. Write an article that appropriately suits the title: \n\n### Title:\n{title}\n\n### Article:\n"
 
1
  import gradio as gr
2
  import transformers as t
3
  import torch
4
+ import peft
5
 
6
  # Load your fine-tuned model and tokenizer
 
7
  tokenizer = t.AutoTokenizer.from_pretrained("NousResearch/Llama-2-7b-hf")
8
+ model = t.AutoModelForCausalLM.from_pretrained("NousResearch/Llama-2-7b-hf", load_in_8bit=True, torch_dtype=torch.float16)
9
  tokenizer.pad_token_id = 0
10
 
11
+ config = peft.LoraConfig(r=8, lora_alpha=16, target_modules=["q_proj", "v_proj"], lora_dropout=0.005, bias="none", task_type="CAUSAL_LM")
12
+ model = peft.get_peft_model(model, config)
13
+
14
+ peft.set_peft_model_state_dict(model, torch.load(f"./output/checkpoint-{checkpoint}/adapter_model.bin"))
15
+
16
  # Define a prediction function
17
  def generate_article(title):
18
  prompt = f"Below is a title for an article. Write an article that appropriately suits the title: \n\n### Title:\n{title}\n\n### Article:\n"