Spaces:
Sleeping
Sleeping
Delete r-story-test.ipynb
Browse files- r-story-test.ipynb +0 -500
r-story-test.ipynb
DELETED
@@ -1,500 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "markdown",
|
5 |
-
"id": "cc27fe9f-c69a-4dab-8d9f-603c7079cad6",
|
6 |
-
"metadata": {},
|
7 |
-
"source": [
|
8 |
-
"## 1. tsv full data load"
|
9 |
-
]
|
10 |
-
},
|
11 |
-
{
|
12 |
-
"cell_type": "code",
|
13 |
-
"execution_count": 1,
|
14 |
-
"id": "60146aa5-f97a-4931-a4f2-7f8d33136f6b",
|
15 |
-
"metadata": {},
|
16 |
-
"outputs": [
|
17 |
-
{
|
18 |
-
"name": "stdout",
|
19 |
-
"output_type": "stream",
|
20 |
-
"text": [
|
21 |
-
" ์ํผ์๋ scene_text type\n",
|
22 |
-
"0 1๊ถ_1ํ_์ด์ค๋์ ๋ค, ๊น์์ ์์ ์จ. ์ ๊ฒฝ ์จ ์ฃผ์
์ ๊ฐ์ฌํฉ๋๋ค. ๋์ฌ\n",
|
23 |
-
"1 1๊ถ_1ํ_์ด์ค๋์ ๋ด ์ด๋ฆ์ ์ฑ์ง์ฐ. E๊ธ ํํฐ ๋ด์ ์ค๋ช
\n",
|
24 |
-
"2 1๊ถ_1ํ_์ด์ค๋์ ๋ญ์ ํํ... ์ค๋๋ ์ ๋ถํ๋๋ฆด๊ฒ์. ๋์ฌ\n",
|
25 |
-
"3 1๊ถ_1ํ_์ด์ค๋์ ํํฐํํ ์์ ์ค ๊ฐ์ฅ ๋ฎ์ ๊ณ๊ธ, ์ต์ฝ์ ํํฐ. ๋ด์ ์ค๋ช
\n",
|
26 |
-
"4 1๊ถ_1ํ_์ด์ค๋์ ์ด? ์๋
ํ์ธ์. ์ฃผํฌ ์จ๋ ์ด๋ฒ ๋ ์ด๋ ๊ฐ์๋๊ตฐ์. ๋์ฌ\n",
|
27 |
-
"์ ์ฒด ๋ฌธ์ฅ ์: 549\n",
|
28 |
-
"์ปฌ๋ผ ๋ชฉ๋ก: ['์ํผ์๋', 'scene_text', 'type']\n"
|
29 |
-
]
|
30 |
-
}
|
31 |
-
],
|
32 |
-
"source": [
|
33 |
-
"import pandas as pd\n",
|
34 |
-
"\n",
|
35 |
-
"\n",
|
36 |
-
"df = pd.read_csv(\"sl_webtoon_full_data_sequential.tsv\", sep=\"\\t\")\n",
|
37 |
-
"\n",
|
38 |
-
"\n",
|
39 |
-
"print(df.head())\n",
|
40 |
-
"print(\"์ ์ฒด ๋ฌธ์ฅ ์:\", len(df))\n",
|
41 |
-
"print(\"์ปฌ๋ผ ๋ชฉ๋ก:\", df.columns.tolist())\n",
|
42 |
-
"\n",
|
43 |
-
"# 549\n",
|
44 |
-
"#์ปฌ๋ผ ๋ชฉ๋ก: ['์ํผ์๋', 'scene_text', 'type']\n"
|
45 |
-
]
|
46 |
-
},
|
47 |
-
{
|
48 |
-
"cell_type": "code",
|
49 |
-
"execution_count": 2,
|
50 |
-
"id": "fd35b473-3d92-4d9d-a8ee-5565dff05e76",
|
51 |
-
"metadata": {},
|
52 |
-
"outputs": [
|
53 |
-
{
|
54 |
-
"name": "stdout",
|
55 |
-
"output_type": "stream",
|
56 |
-
"text": [
|
57 |
-
" ์ํผ์๋ scene_text type\n",
|
58 |
-
"0 1๊ถ_1ํ_์ด์ค๋์ ๋ค, ๊น์์ ์์ ์จ. ์ ๊ฒฝ ์จ ์ฃผ์
์ ๊ฐ์ฌํฉ๋๋ค. ๋์ฌ\n",
|
59 |
-
"1 1๊ถ_1ํ_์ด์ค๋์ ๋ด ์ด๋ฆ์ ์ฑ์ง์ฐ. E๊ธ ํํฐ ๋ด์ ์ค๋ช
\n",
|
60 |
-
"2 1๊ถ_1ํ_์ด์ค๋์ ๋ญ์ ํํ... ์ค๋๋ ์ ๋ถํ๋๋ฆด๊ฒ์. ๋์ฌ\n",
|
61 |
-
"์ปฌ๋ผ: ['์ํผ์๋', 'scene_text', 'type'] ์ ์ฒด ํ: 549\n"
|
62 |
-
]
|
63 |
-
}
|
64 |
-
],
|
65 |
-
"source": [
|
66 |
-
"import pandas as pd\n",
|
67 |
-
"\n",
|
68 |
-
"df = pd.read_csv(\"sl_webtoon_full_data_sequential.tsv\", sep=\"\\t\")\n",
|
69 |
-
"print(df.head(3))\n",
|
70 |
-
"print(\"์ปฌ๋ผ:\", df.columns.tolist(), \"์ ์ฒด ํ:\", len(df))\n"
|
71 |
-
]
|
72 |
-
},
|
73 |
-
{
|
74 |
-
"cell_type": "code",
|
75 |
-
"execution_count": 3,
|
76 |
-
"id": "fa5db259-991a-48b1-859f-2308432737c5",
|
77 |
-
"metadata": {},
|
78 |
-
"outputs": [
|
79 |
-
{
|
80 |
-
"name": "stdout",
|
81 |
-
"output_type": "stream",
|
82 |
-
"text": [
|
83 |
-
"['[1๊ถ_1ํ_์ด์ค๋์ ] #0 ๋์ฌ ๋ค, ๊น์์ ์์ ์จ. ์ ๊ฒฝ ์จ ์ฃผ์
์ ๊ฐ์ฌํฉ๋๋ค.', '[1๊ถ_1ํ_์ด์ค๋์ ] #1 ๋ด์ ์ค๋ช
๋ด ์ด๋ฆ์ ์ฑ์ง์ฐ. E๊ธ ํํฐ', '[1๊ถ_1ํ_์ด์ค๋์ ] #2 ๋์ฌ ๋ญ์ ํํ... ์ค๋๋ ์ ๋ถํ๋๋ฆด๊ฒ์.']\n"
|
84 |
-
]
|
85 |
-
}
|
86 |
-
],
|
87 |
-
"source": [
|
88 |
-
"\n",
|
89 |
-
"df['row_id'] = df.index #์ธ๋ฑ์ค ์ปฌ๋ผ ์ถ๊ฐ <- ์๋ณธ ์ถ์ ์ฉ\n",
|
90 |
-
"\n",
|
91 |
-
"df['text'] = df.apply(\n",
|
92 |
-
" lambda x: f\"[{x['์ํผ์๋']}] #{x['row_id']} {x['type']} {x['scene_text']}\", #rag ๋ฌธ์ฅ ์ปฌ๋ผ ์์ฑ\n",
|
93 |
-
" axis=1\n",
|
94 |
-
")\n",
|
95 |
-
"\n",
|
96 |
-
"print(df['text'].head(3).tolist())\n"
|
97 |
-
]
|
98 |
-
},
|
99 |
-
{
|
100 |
-
"cell_type": "code",
|
101 |
-
"execution_count": 4,
|
102 |
-
"id": "0b95c977-5485-4fdf-b5d8-fb837a0a8cf7",
|
103 |
-
"metadata": {},
|
104 |
-
"outputs": [
|
105 |
-
{
|
106 |
-
"name": "stdout",
|
107 |
-
"output_type": "stream",
|
108 |
-
"text": [
|
109 |
-
"์ต์ข
๋ฌธ์ฅ ์: 549\n"
|
110 |
-
]
|
111 |
-
}
|
112 |
-
],
|
113 |
-
"source": [
|
114 |
-
"texts = df['text'].tolist()\n",
|
115 |
-
"print(\"์ต์ข
๋ฌธ์ฅ ์:\", len(texts))\n",
|
116 |
-
"# 549"
|
117 |
-
]
|
118 |
-
},
|
119 |
-
{
|
120 |
-
"cell_type": "markdown",
|
121 |
-
"id": "0be84111-8a20-49b4-827a-305e9498fe15",
|
122 |
-
"metadata": {},
|
123 |
-
"source": [
|
124 |
-
"## 2. Rag ๋ฌธ์ฅ ์์ฑ"
|
125 |
-
]
|
126 |
-
},
|
127 |
-
{
|
128 |
-
"cell_type": "code",
|
129 |
-
"execution_count": 5,
|
130 |
-
"id": "2f948651-c16f-40d6-9b96-2aaafb1d7bc9",
|
131 |
-
"metadata": {},
|
132 |
-
"outputs": [
|
133 |
-
{
|
134 |
-
"name": "stdout",
|
135 |
-
"output_type": "stream",
|
136 |
-
"text": [
|
137 |
-
"์์ 5๊ฐ:\n",
|
138 |
-
"- [1๊ถ_1ํ_์ด์ค๋์ ] #0 ๋์ฌ ๋ค, ๊น์์ ์์ ์จ. ์ ๊ฒฝ ์จ ์ฃผ์
์ ๊ฐ์ฌํฉ๋๋ค.\n",
|
139 |
-
"- [1๊ถ_1ํ_์ด์ค๋์ ] #1 ๋ด์ ์ค๋ช
๋ด ์ด๋ฆ์ ์ฑ์ง์ฐ. E๊ธ ํํฐ\n",
|
140 |
-
"- [1๊ถ_1ํ_์ด์ค๋์ ] #2 ๋์ฌ ๋ญ์ ํํ... ์ค๋๋ ์ ๋ถํ๋๋ฆด๊ฒ์.\n",
|
141 |
-
"- [1๊ถ_1ํ_์ด์ค๋์ ] #3 ๋ด์ ์ค๋ช
ํํฐํํ ์์ ์ค ๊ฐ์ฅ ๋ฎ์ ๊ณ๊ธ, ์ต์ฝ์ ํํฐ.\n",
|
142 |
-
"- [1๊ถ_1ํ_์ด์ค๋์ ] #4 ๋์ฌ ์ด? ์๋
ํ์ธ์. ์ฃผํฌ ์จ๋ ์ด๋ฒ ๋ ์ด๋ ๊ฐ์๋๊ตฐ์.\n",
|
143 |
-
"\n",
|
144 |
-
"์ต์ข
๋ฌธ์ฅ ์: 549\n"
|
145 |
-
]
|
146 |
-
}
|
147 |
-
],
|
148 |
-
"source": [
|
149 |
-
"# 2๋จ๊ณ: ์ต์ข
RAG ๋ฌธ์ฅ ์์ฑ\n",
|
150 |
-
"df['row_id'] = df.index # ์๋ณธ ์ถ์ ์ฉ ์ธ๋ฑ์ค\n",
|
151 |
-
"df['text'] = df.apply(\n",
|
152 |
-
" lambda x: f\"[{x['์ํผ์๋']}] #{x['row_id']} {x['type']} {x['scene_text']}\",\n",
|
153 |
-
" axis=1\n",
|
154 |
-
")\n",
|
155 |
-
"\n",
|
156 |
-
"print(\"์์ 5๊ฐ:\")\n",
|
157 |
-
"for t in df['text'].head(5).tolist():\n",
|
158 |
-
" print(\"-\", t)\n",
|
159 |
-
"\n",
|
160 |
-
"texts = df['text'].tolist()\n",
|
161 |
-
"print(\"\\n์ต์ข
๋ฌธ์ฅ ์:\", len(texts))\n",
|
162 |
-
"#549"
|
163 |
-
]
|
164 |
-
},
|
165 |
-
{
|
166 |
-
"cell_type": "markdown",
|
167 |
-
"id": "0d659a2e-2c7b-4158-b676-d85abc5d3e92",
|
168 |
-
"metadata": {},
|
169 |
-
"source": [
|
170 |
-
"## 3. ํ๊ตญ์ด ์๋ฒ ๋ฉ ๋ชจ๋ธ ๋ก๋, ๋ฒกํฐ db - solo_leveling_faiss_ko\n",
|
171 |
-
"\n"
|
172 |
-
]
|
173 |
-
},
|
174 |
-
{
|
175 |
-
"cell_type": "code",
|
176 |
-
"execution_count": 6,
|
177 |
-
"id": "6ef1ac89-0931-48a8-9024-26150004b81d",
|
178 |
-
"metadata": {},
|
179 |
-
"outputs": [
|
180 |
-
{
|
181 |
-
"name": "stderr",
|
182 |
-
"output_type": "stream",
|
183 |
-
"text": [
|
184 |
-
"/tmp/ipykernel_1396183/2454380050.py:4: LangChainDeprecationWarning: The class `HuggingFaceEmbeddings` was deprecated in LangChain 0.2.2 and will be removed in 1.0. An updated version of the class exists in the :class:`~langchain-huggingface package and should be used instead. To use it run `pip install -U :class:`~langchain-huggingface` and import as `from :class:`~langchain_huggingface import HuggingFaceEmbeddings``.\n",
|
185 |
-
" embedding_model = HuggingFaceEmbeddings(model_name='jhgan/ko-sroberta-multitask')\n"
|
186 |
-
]
|
187 |
-
},
|
188 |
-
{
|
189 |
-
"name": "stdout",
|
190 |
-
"output_type": "stream",
|
191 |
-
"text": [
|
192 |
-
" ๋ฒกํฐDB ์์ฑ ์๋ฃ. ์ด ๋ฌธ์ฅ ์: 549\n",
|
193 |
-
" 'solo_leveling_faiss_ko' ํด๋์ ์ ์ฅ\n"
|
194 |
-
]
|
195 |
-
}
|
196 |
-
],
|
197 |
-
"source": [
|
198 |
-
"from langchain.vectorstores import FAISS\n",
|
199 |
-
"from langchain.embeddings import HuggingFaceEmbeddings\n",
|
200 |
-
"\n",
|
201 |
-
"embedding_model = HuggingFaceEmbeddings(model_name='jhgan/ko-sroberta-multitask')\n",
|
202 |
-
"\n",
|
203 |
-
"db = FAISS.from_texts(texts, embedding_model)\n",
|
204 |
-
"print(\" ๋ฒกํฐDB ์์ฑ ์๋ฃ. ์ด ๋ฌธ์ฅ ์:\", len(texts))\n",
|
205 |
-
"\n",
|
206 |
-
"db.save_local(\"solo_leveling_faiss_ko\")\n",
|
207 |
-
"print(\" 'solo_leveling_faiss_ko' ํด๋์ ์ ์ฅ\")\n"
|
208 |
-
]
|
209 |
-
},
|
210 |
-
{
|
211 |
-
"cell_type": "code",
|
212 |
-
"execution_count": 7,
|
213 |
-
"id": "a6acad70-ae02-4808-800e-fee4c2a36153",
|
214 |
-
"metadata": {},
|
215 |
-
"outputs": [
|
216 |
-
{
|
217 |
-
"name": "stdout",
|
218 |
-
"output_type": "stream",
|
219 |
-
"text": [
|
220 |
-
"[1] [2๊ถ_3ํ_ํ์คํธ ] #332 ๋์ฌ ๋์ ์ ์ฌ๋ ๋ง์๋ผ๋ฉด ๋ง์ ์์ ๊ฐ๊ณ ์์ ์ค ์์๋๋ฐ...์์ ํ ๋ค๋ฅธ ๋ถ๋ฅ์ธ๊ฐ.\n",
|
221 |
-
"[2] [1๊ถ_3ํ_ํ์คํธ] #132 ๋์ฌ ์ฌ... ์ฌ๊ธด?! ์ฌ๋ง...!!\n",
|
222 |
-
"[3] [2๊ถ_3ํ_ํ์คํธ ] #331 ๋์ฌ ์ด ๋
์๋ค์ ๋ง์ ์ ๊ฐ์ ๊ฑด ์ ์ฃผ๋?\n",
|
223 |
-
"[4] [2๊ถ_4ํ_๋ณด์ค์ ] #457 ๋ด์ ์ค๋ช
๊ฒฝํ์ด ๋ง์ผ๋ฉด ๋ง์์๋ก ๋ญํฌ๊ฐ ๋์ผ๋ฉด ๋์์๋ก ๋ง์๋ค์๊ฒ์ ๋์ค๋ ๋ง์ ์์ ๊ฐ์น๋ฅผ ๋ํด ๊ฐ๋ค.\n",
|
224 |
-
"[5] [2๊ถ_4ํ_๋ณด์ค์ ] #449 ๋์ฌ ๋ฌธ์ ๋ ์ง๋ฅ์ธ๋ฐ... ๋ง๋ฒ๊ณผ ๊ด๋ จ๋ ์คํฏ์ผ ๊ฒ ๊ฐ๊ธด ํ๋ฐ, ์ด๊ฒ ํผ๋ฃกํ ๊น?\n"
|
225 |
-
]
|
226 |
-
}
|
227 |
-
],
|
228 |
-
"source": [
|
229 |
-
"db = FAISS.load_local(\"solo_leveling_faiss_ko\", embedding_model, allow_dangerous_deserialization=True)\n",
|
230 |
-
"\n",
|
231 |
-
"\n",
|
232 |
-
"query = \"๋ง๋์์ด ๋ญ์ง?\"\n",
|
233 |
-
"docs = db.similarity_search(query, k=5)\n",
|
234 |
-
"\n",
|
235 |
-
"for i, doc in enumerate(docs, 1):\n",
|
236 |
-
" print(f\"[{i}] {doc.page_content}\")\n"
|
237 |
-
]
|
238 |
-
},
|
239 |
-
{
|
240 |
-
"cell_type": "code",
|
241 |
-
"execution_count": 8,
|
242 |
-
"id": "b215211a-ed27-4571-a9cf-b5792c6fa20c",
|
243 |
-
"metadata": {},
|
244 |
-
"outputs": [],
|
245 |
-
"source": [
|
246 |
-
"## rag ํ์ธ"
|
247 |
-
]
|
248 |
-
},
|
249 |
-
{
|
250 |
-
"cell_type": "code",
|
251 |
-
"execution_count": 9,
|
252 |
-
"id": "caf4de14-02ef-4143-97eb-00cdab7a2fa5",
|
253 |
-
"metadata": {},
|
254 |
-
"outputs": [
|
255 |
-
{
|
256 |
-
"name": "stderr",
|
257 |
-
"output_type": "stream",
|
258 |
-
"text": [
|
259 |
-
"Device set to use cuda:0\n"
|
260 |
-
]
|
261 |
-
}
|
262 |
-
],
|
263 |
-
"source": [
|
264 |
-
"from transformers import pipeline\n",
|
265 |
-
"\n",
|
266 |
-
"generator = pipeline(\n",
|
267 |
-
" \"text-generation\",\n",
|
268 |
-
" model=\"kakaocorp/kanana-nano-2.1b-instruct\",\n",
|
269 |
-
" device=0 \n",
|
270 |
-
")\n",
|
271 |
-
"\n"
|
272 |
-
]
|
273 |
-
},
|
274 |
-
{
|
275 |
-
"cell_type": "code",
|
276 |
-
"execution_count": 10,
|
277 |
-
"id": "2ef2966e-c110-4565-8ddf-1a1bee864934",
|
278 |
-
"metadata": {},
|
279 |
-
"outputs": [
|
280 |
-
{
|
281 |
-
"name": "stderr",
|
282 |
-
"output_type": "stream",
|
283 |
-
"text": [
|
284 |
-
"Device set to use cuda:0\n",
|
285 |
-
"/tmp/ipykernel_1396183/3834059051.py:17: LangChainDeprecationWarning: The class `HuggingFacePipeline` was deprecated in LangChain 0.0.37 and will be removed in 1.0. An updated version of the class exists in the :class:`~langchain-huggingface package and should be used instead. To use it run `pip install -U :class:`~langchain-huggingface` and import as `from :class:`~langchain_huggingface import HuggingFacePipeline``.\n",
|
286 |
-
" llm = HuggingFacePipeline(pipeline=llm_pipeline)\n",
|
287 |
-
"/tmp/ipykernel_1396183/3834059051.py:35: LangChainDeprecationWarning: The method `Chain.__call__` was deprecated in langchain 0.1.0 and will be removed in 1.0. Use :meth:`~invoke` instead.\n",
|
288 |
-
" result = qa_chain({\"query\": query})\n"
|
289 |
-
]
|
290 |
-
},
|
291 |
-
{
|
292 |
-
"name": "stdout",
|
293 |
-
"output_type": "stream",
|
294 |
-
"text": [
|
295 |
-
"๋ต๋ณ: ๋ค์ ๋ฌธ๋งฅ์ ์ฐธ๊ณ ํ์ฌ ์ง๋ฌธ์ ๋ตํ์ธ์.\n",
|
296 |
-
"\n",
|
297 |
-
"๋ฌธ๋งฅ:\n",
|
298 |
-
"[1๊ถ_1ํ_์ด์ค๋์ ] #1 ๋ด์ ์ค๋ช
๋ด ์ด๋ฆ์ ์ฑ์ง์ฐ. E๊ธ ํํฐ\n",
|
299 |
-
"\n",
|
300 |
-
"[2๊ถ_4ํ_๋ณด์ค์ ] #451 ๋์ฌ ํํฐ ์ฑ์ง์ฐ์
๋๋ค.\n",
|
301 |
-
"\n",
|
302 |
-
"[1๊ถ_1ํ_์ด์ค๋์ ] #9 ๋ด์ ์ค๋ช
E๊ธ ํํฐ ์ฑ์ง์ฐ.\n",
|
303 |
-
"\n",
|
304 |
-
"[3๊ถ_7ํ_์ด์ํ๋ ์ด๋] #484 ๋ด์ ์ค๋ช
๊ทธ ๋
์์ด ์ํ๋ ๊ฑด ์ค๋ ฅ์ ์์ง๋ง ๋ฑ๊ธ์ด ๋ฎ์ ํํฐ๋๊น.\n",
|
305 |
-
"\n",
|
306 |
-
"[2๊ถ_4ํ_๋ณด์ค์ ] #468 ๋ด์ ์ค๋ช
๋ฅ๋ ฅ์น๋ฅผ ์ฌ๋ฆด ์ ์๋ ํํฐ๊ฐ ์๋ค?\n",
|
307 |
-
"\n",
|
308 |
-
"์ง๋ฌธ:\n",
|
309 |
-
"์ฑ์ง์ฐ๋ ๋ช ๊ธ ํํฐ์ง?\n",
|
310 |
-
"\n",
|
311 |
-
"๋ต๋ณ: ์ฑ์ง์ฐ๋ E๊ธ ํํฐ์
๋๋ค. #1 ๋ด์ ์ค๋ช
์ฐธ๊ณ ํ์ธ์. ๋ํ, #9 ๋ด์ ์ค๋ช
์์๋ ๋์ผํ ์ ๋ณด๋ฅผ ํ์ธํ ์ ์์ต๋๋ค. #4 ํ์ ๋์ฌ์์๋ ํ์ธํ ์ ์์ต๋๋ค. ํํฐ ์ฑ์ง์ฐ์
๋๋ค. ์ด ์ ๋ณด๋ค์ ์ข
ํฉํด ๋ณด๋ฉด ์ฑ์ง์ฐ๋ E๊ธ ํํฐ๋ผ๋ ๊ฒ์ ์ ์ ์์ต๋๋ค. #3 ๊ถ์ #484 ๋ด์ ์ค๋ช
์์๋ ์ฑ์ง์ฐ์ ๋ฑ๊ธ์ด E๊ธ์์ ๋ค์ ํ ๋ฒ ํ์ธํ ์ ์์ต๋๋ค. ๋ฐ๋ผ์ ์ฑ์ง์ฐ๋ E๊ธ ํํฐ์
๋๋ค. ๋ต: E๊ธ ํํฐ. #2 ๊ถ์ #468 ๋ด์ ์ค๋ช
์์๋ ๋ฅ๋ ฅ์น๋ฅผ ์ฌ๋ฆด ์ ์๋ ํํฐ๊ฐ ์๋์ง ๋ฌป๊ณ ์์ง๋ง, ์ฑ์ง์ฐ์ ๋ฑ๊ธ์ E๊ธ์ผ๋ก ๊ณ ์ ๋์ด ์์ต๋๋ค. ์ด ์ ์ ๊ณ ๋ คํ๋ฉด ์ฑ์ง์ฐ๋ E๊ธ ํํฐ์
๋๋ค. ๋ฐ๋ผ์ ์ต์ข
๋ต๋ณ์ ์ฑ์ง์ฐ๋ E๊ธ ํํฐ์
๋๋ค. ๋ต: E๊ธ ํํฐ. #2 ๊ถ์ #468 ๋ด์ ์ค๋ช
์ ์ํฅ์ ๋ฐ์ง ์๊ณ , ์ฑ์ง์ฐ์ ๋ฑ๊ธ์ E๊ธ์ผ๋ก ํ\n",
|
312 |
-
"\n",
|
313 |
-
"์ฐธ์กฐ ๋ฌธ์:\n",
|
314 |
-
"[1๊ถ_1ํ_์ด์ค๋์ ] #1 ๋ด์ ์ค๋ช
๋ด ์ด๋ฆ์ ์ฑ์ง์ฐ. E๊ธ ํํฐ\n",
|
315 |
-
"[2๊ถ_4ํ_๋ณด์ค์ ] #451 ๋์ฌ ํํฐ ์ฑ์ง์ฐ์
๋๋ค.\n",
|
316 |
-
"[1๊ถ_1ํ_์ด์ค๋์ ] #9 ๋ด์ ์ค๋ช
E๊ธ ํํฐ ์ฑ์ง์ฐ.\n",
|
317 |
-
"[3๊ถ_7ํ_์ด์ํ๋ ์ด๋] #484 ๋ด์ ์ค๋ช
๊ทธ ๋
์์ด ์ํ๋ ๊ฑด ์ค๋ ฅ์ ์์ง๋ง ๋ฑ๊ธ์ด ๋ฎ์ ํํฐ๋๊น.\n",
|
318 |
-
"[2๊ถ_4ํ_๋ณด์ค์ ] #468 ๋ด์ ์ค๋ช
๋ฅ๋ ฅ์น๋ฅผ ์ฌ๋ฆด ์ ์๋ ํํฐ๊ฐ ์๋ค?\n"
|
319 |
-
]
|
320 |
-
}
|
321 |
-
],
|
322 |
-
"source": [
|
323 |
-
"from langchain.chains import RetrievalQA\n",
|
324 |
-
"from langchain.vectorstores import FAISS\n",
|
325 |
-
"from langchain.prompts import PromptTemplate\n",
|
326 |
-
"from langchain_community.llms import HuggingFacePipeline\n",
|
327 |
-
"from langchain.embeddings import HuggingFaceEmbeddings\n",
|
328 |
-
"import torch\n",
|
329 |
-
"from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline\n",
|
330 |
-
"\n",
|
331 |
-
"embedding_model = HuggingFaceEmbeddings(model_name='jhgan/ko-sroberta-multitask')\n",
|
332 |
-
"vectorstore = FAISS.load_local(\"solo_leveling_faiss_ko\", embedding_model, allow_dangerous_deserialization=True)\n",
|
333 |
-
"\n",
|
334 |
-
"model_name = \"kakaocorp/kanana-nano-2.1b-instruct\"\n",
|
335 |
-
"tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
|
336 |
-
"model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16).to(\"cuda\")\n",
|
337 |
-
"\n",
|
338 |
-
"llm_pipeline = pipeline(\"text-generation\", model=model, tokenizer=tokenizer, max_new_tokens=256)\n",
|
339 |
-
"llm = HuggingFacePipeline(pipeline=llm_pipeline)\n",
|
340 |
-
"\n",
|
341 |
-
"custom_prompt = PromptTemplate(\n",
|
342 |
-
" input_variables=[\"context\", \"question\"],\n",
|
343 |
-
" template=\"๋ค์ ๋ฌธ๋งฅ์ ์ฐธ๊ณ ํ์ฌ ์ง๋ฌธ์ ๋ตํ์ธ์.\\n\\n๋ฌธ๋งฅ:\\n{context}\\n\\n์ง๋ฌธ:\\n{question}\\n\\n๋ต๋ณ:\"\n",
|
344 |
-
")\n",
|
345 |
-
"\n",
|
346 |
-
"qa_chain = RetrievalQA.from_chain_type(\n",
|
347 |
-
" llm=llm,\n",
|
348 |
-
" retriever=vectorstore.as_retriever(search_kwargs={\"k\": 5}),\n",
|
349 |
-
" chain_type=\"stuff\",\n",
|
350 |
-
" return_source_documents=True,\n",
|
351 |
-
" chain_type_kwargs={\n",
|
352 |
-
" \"prompt\": custom_prompt }\n",
|
353 |
-
")\n",
|
354 |
-
"\n",
|
355 |
-
"#์ง๋ฌธ\n",
|
356 |
-
"query = \"์ฑ์ง์ฐ๋ ๋ช ๊ธ ํํฐ์ง?\"\n",
|
357 |
-
"result = qa_chain({\"query\": query})\n",
|
358 |
-
"\n",
|
359 |
-
"print(\"๋ต๋ณ:\", result[\"result\"])\n",
|
360 |
-
"print(\"\\n์ฐธ์กฐ ๋ฌธ์:\")\n",
|
361 |
-
"for doc in result[\"source_documents\"]:\n",
|
362 |
-
" print(doc.page_content)\n"
|
363 |
-
]
|
364 |
-
},
|
365 |
-
{
|
366 |
-
"cell_type": "markdown",
|
367 |
-
"id": "a10cc72f-d587-4dc3-a6a4-e56b08d0a985",
|
368 |
-
"metadata": {},
|
369 |
-
"source": [
|
370 |
-
"## 4. ํฉ๋์ ์ํผ์๋ "
|
371 |
-
]
|
372 |
-
},
|
373 |
-
{
|
374 |
-
"cell_type": "code",
|
375 |
-
"execution_count": 13,
|
376 |
-
"id": "46946824-27c5-4a95-a293-d6b3ab905277",
|
377 |
-
"metadata": {},
|
378 |
-
"outputs": [
|
379 |
-
{
|
380 |
-
"name": "stdout",
|
381 |
-
"output_type": "stream",
|
382 |
-
"text": [
|
383 |
-
"\n",
|
384 |
-
"[์ ํ์ง]\n",
|
385 |
-
"1. 1: ํฉ๋์ ๋ฌด๋ฆฌ๋ฅผ ๋ชจ๋ ์ฒ์นํ๋ค.\n",
|
386 |
-
"2. 2: ์งํธ๋ฅผ ํฌํจํ ํฉ๋์ ๋ฌด๋ฆฌ๋ฅผ ๋ชจ๋ ์ฒ์นํ๋ค.\n",
|
387 |
-
"3. 3: ์ ๋ถ ๊ธฐ์ ์ํค๊ณ ์ด๋ ค๋๋ค.\n",
|
388 |
-
"4. 4: ์์คํ
์ ๊ฑฐ๋ถํ๊ณ ๊ทธ๋ฅ ๋๋ง์น๋ค.\n"
|
389 |
-
]
|
390 |
-
},
|
391 |
-
{
|
392 |
-
"name": "stdin",
|
393 |
-
"output_type": "stream",
|
394 |
-
"text": [
|
395 |
-
"\n",
|
396 |
-
"์ ํ ๋ฒํธ ์
๋ ฅ: 2\n"
|
397 |
-
]
|
398 |
-
},
|
399 |
-
{
|
400 |
-
"name": "stdout",
|
401 |
-
"output_type": "stream",
|
402 |
-
"text": [
|
403 |
-
"\n",
|
404 |
-
"[์ฌ์ฉ์ ์ ํ]: 2: ์งํธ๋ฅผ ํฌํจํ ํฉ๋์ ๋ฌด๋ฆฌ๋ฅผ ๋ชจ๋ ์ฒ์นํ๋ค.\n",
|
405 |
-
"\n",
|
406 |
-
"[๊ฒ์๋ ๊ทผ๊ฑฐ ๋ฌธ์ ์์]\n",
|
407 |
-
"[2๊ถ_4ํ_๋ณด์ค์ ] #399 ๋ด์ ์ค๋ช
๋์์ ์ด๋์ ๋ฐฉ์ด๋ ฅ์ ๋ฌด๋ ฅํ์์ผ์ผ ํด.\n",
|
408 |
-
"[2๊ถ_4ํ_๋ณด์ค์ ] #437 ๋์ฌ ๋์ ๋ฐฉ์ด๋ง ๋ฌด๋ ฅํ์ํฌ ์ ์๋ค๋ฉด, ํ ์ ์๋ค!\n",
|
409 |
-
"[1๊ถ_1ํ_์ด์ค๋์ ] #73 ๋์ฌ ์ ๊ธฐ๋! ์ด ๋
์๋ค์ด ๋ง์๋ง ๋จน์ผ๋ฉด ์ธ์ ๋ผ๋ ์ ๋ฉธ์ํฌ ์ ์๋ค๋ ๊ฑด๊ฐ.\n",
|
410 |
-
"[2๊ถ_3ํ_ํ์คํธ ] #341 ๋์ฌ ์ด์ ์ด์ฉ์ง... ๋ณด์ค๋ฅผ ์ฒ์นํ์ง ์์ผ๋ฉด ๋ฐ์ผ๋ก ๋๊ฐ ์ ์์ด.\n",
|
411 |
-
"[2๊ถ_3ํ_ํ์คํธ ] #330 ๋์ฌ ๊ณ ์ ๋ง์ ๋ ๋ง๋ฆฌ ํผ์ ์ฐ๋ฌ๋จ๋ฆฐ ๊ฒ ๊ฐ์ง๊ณ ๋๋ฌด ํธ๋ค๊ฐ์ธ๊ฐ... ...\n",
|
412 |
-
"\n",
|
413 |
-
"[์ฑ์ง์ฐ ์๋ต]\n",
|
414 |
-
"์งํธ๋ฅผ ํฌํจํ ํฉ๋์ ๋ฌด๋ฆฌ๋ฅผ ์ฒ์นํ๋ฉด ๋ณด์ค์ ์์ ์ ๋ฆฌํ ์์น๋ฅผ ์ฐจ์งํ ์ ์์ด. ๊ทธ๋ค์ ์ฒ์นํ๋ ๊ฒ ์ค์ํด. ์ง๊ธ์ด ๊ธฐํ์ผ. ์ต์ ์ ๋คํด ๊ทธ๋ค์ ๋ฌผ๋ฆฌ์ณ์ผ ํด. ๊ทธ๋ค์ด ์ด์๋จ์ผ๋ฉด ๋ณด์ค์ ์์ ํฐ ์ํ์ด ๋ ์ ์์ด. ๊ทธ๋ค์ ์๋ช
์ ๋์ด์ผ ํด. ๊ทธ๋ค์ด ๋ ์ด์ ๋ฐฉํดํ์ง ์๋๋ก ํด์ผ ํด. ๊ทธ๋ค์ ์ฒ์นํ๋ ๊ฒ ์ฐ๋ฆฌ์ ๋ชฉํ์ผ. ๊ทธ๋ค์ด ์ฐ๋ฆฌ์ ์ ์ด๋๊น. ๊ทธ๋ค์ ๋ฌผ๋ฆฌ์น๋ ๊ฒ ์ฐ๋ฆฌ์ ์๋ฌด์ผ. ๊ทธ๋ค์ด ์ฐ๋ฆฌ๋ฅผ ๋ฐฉํดํ์ง ์๋๋ก ํด์ผ ํด. ๊ทธ๋ค์ ์ฒ์นํ๋ ๊ฒ ์ฐ๋ฆฌ์ ๊ธธ์ด์ผ. ๊ทธ๋ค์ด ์ฐ๋ฆฌ์ ๋ฐ๋ชฉ์ ์ก๊ณ ์์ด. ๊ทธ๋ค์ ์ฒ์นํ๋ ๊ฒ ์ฐ๋ฆฌ์ ์ ํ์ด์ผ. ๊ทธ๋ค์ด ์ฐ๋ฆฌ์ ์ ์ด๋๊น. ๊ทธ๋ค์ ๋ฌผ๋ฆฌ์น๋ ๊ฒ ์ฐ๋ฆฌ์ ์๋ฌด์ผ. ๊ทธ๋ค์ด ์ฐ๋ฆฌ๋ฅผ ๋ฐฉํดํ์ง ์๋๋ก\n"
|
415 |
-
]
|
416 |
-
}
|
417 |
-
],
|
418 |
-
"source": [
|
419 |
-
"choices = [\n",
|
420 |
-
" \"1: ํฉ๋์ ๋ฌด๋ฆฌ๋ฅผ ๋ชจ๋ ์ฒ์นํ๋ค.\",\n",
|
421 |
-
" \"2: ์งํธ๋ฅผ ํฌํจํ ํฉ๋์ ๋ฌด๋ฆฌ๋ฅผ ๋ชจ๋ ์ฒ์นํ๋ค.\",\n",
|
422 |
-
" \"3: ์ ๋ถ ๊ธฐ์ ์ํค๊ณ ์ด๋ ค๋๋ค.\",\n",
|
423 |
-
" \"4: ์์คํ
์ ๊ฑฐ๋ถํ๊ณ ๊ทธ๋ฅ ๋๋ง์น๋ค.\"\n",
|
424 |
-
"]\n",
|
425 |
-
"\n",
|
426 |
-
"print(\"\\n[์ ํ์ง]\")\n",
|
427 |
-
"for idx, choice in enumerate(choices, start=1):\n",
|
428 |
-
" print(f\"{idx}. {choice}\")\n",
|
429 |
-
"\n",
|
430 |
-
"user_idx = int(input(\"\\n์ ํ ๋ฒํธ ์
๋ ฅ: \")) - 1\n",
|
431 |
-
"user_choice = choices[user_idx]\n",
|
432 |
-
"print(f\"\\n[์ฌ์ฉ์ ์ ํ]: {user_choice}\")\n",
|
433 |
-
"\n",
|
434 |
-
"result = qa_chain({\"query\": user_choice})\n",
|
435 |
-
"\n",
|
436 |
-
"retrieved_context = \"\\n\".join([doc.page_content for doc in result[\"source_documents\"]])\n",
|
437 |
-
"print(\"\\n[๊ฒ์๋ ๊ทผ๊ฑฐ ๋ฌธ์ ์์]\")\n",
|
438 |
-
"print(retrieved_context[:600], \"...\") \n",
|
439 |
-
"\n",
|
440 |
-
"prompt = f\"\"\"\n",
|
441 |
-
"๋น์ ์ ์นํฐ '๋ ํผ์๋ง ๋ ๋ฒจ์
'์ ์ฑ์ง์ฐ์
๋๋ค.\n",
|
442 |
-
"ํ์ฌ ์ํฉ:\n",
|
443 |
-
"{retrieved_context}\n",
|
444 |
-
"\n",
|
445 |
-
"์ฌ์ฉ์ ์ ํ: {user_choice}\n",
|
446 |
-
"\n",
|
447 |
-
"์ฑ์ง์ฐ์ ๋งํฌ๋ก ๊ฐ๊ฒฐํ๊ณ ์์ฐ์ค๋ฌ์ด ๋์ฌ๋ฅผ 1~2๋ฌธ์ฅ ์์ฑํ์ธ์.\n",
|
448 |
-
"์ค๋ณต๋ ๋ด์ฉ์ด๋ ๋น์ทํ ๋ฌธ์ฅ์ ๋ง๋ค์ง ๋ง์ธ์.\n",
|
449 |
-
"\"\"\"\n",
|
450 |
-
"\n",
|
451 |
-
"response = generator(prompt, \n",
|
452 |
-
" max_new_tokens=200, \n",
|
453 |
-
" do_sample=True, \n",
|
454 |
-
" temperature=0.6,\n",
|
455 |
-
" top_p = 0.9,\n",
|
456 |
-
" return_full_text=False \n",
|
457 |
-
")[0][\"generated_text\"]\n",
|
458 |
-
"print(\"\\n[์ฑ์ง์ฐ ์๋ต]\")\n",
|
459 |
-
"print(response)\n"
|
460 |
-
]
|
461 |
-
},
|
462 |
-
{
|
463 |
-
"cell_type": "code",
|
464 |
-
"execution_count": null,
|
465 |
-
"id": "7b183dc5-56be-4464-b737-00f11b30bbd0",
|
466 |
-
"metadata": {},
|
467 |
-
"outputs": [],
|
468 |
-
"source": []
|
469 |
-
},
|
470 |
-
{
|
471 |
-
"cell_type": "markdown",
|
472 |
-
"id": "495143f6-df63-496d-a35c-4fff9f40f6b5",
|
473 |
-
"metadata": {},
|
474 |
-
"source": [
|
475 |
-
"## "
|
476 |
-
]
|
477 |
-
}
|
478 |
-
],
|
479 |
-
"metadata": {
|
480 |
-
"kernelspec": {
|
481 |
-
"display_name": "Python (ka)",
|
482 |
-
"language": "python",
|
483 |
-
"name": "myenv"
|
484 |
-
},
|
485 |
-
"language_info": {
|
486 |
-
"codemirror_mode": {
|
487 |
-
"name": "ipython",
|
488 |
-
"version": 3
|
489 |
-
},
|
490 |
-
"file_extension": ".py",
|
491 |
-
"mimetype": "text/x-python",
|
492 |
-
"name": "python",
|
493 |
-
"nbconvert_exporter": "python",
|
494 |
-
"pygments_lexer": "ipython3",
|
495 |
-
"version": "3.10.12"
|
496 |
-
}
|
497 |
-
},
|
498 |
-
"nbformat": 4,
|
499 |
-
"nbformat_minor": 5
|
500 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|