|
import os |
|
import streamlit as st |
|
import pandas as pd |
|
import faiss |
|
from sentence_transformers import SentenceTransformer |
|
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer |
|
from groq import Groq |
|
|
|
|
|
os.environ["HF_HOME"] = "/tmp/huggingface" |
|
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface" |
|
os.environ["SENTENCE_TRANSFORMERS_HOME"] = "/tmp/huggingface" |
|
|
|
|
|
GROQ_API_KEY = os.getenv("GROQ_API_KEY") |
|
if not GROQ_API_KEY: |
|
st.error("β Error: GROQ_API_KEY is missing. Set it as an environment variable.") |
|
st.stop() |
|
|
|
client = Groq(api_key=GROQ_API_KEY) |
|
|
|
|
|
st.sidebar.header("Loading AI Models... Please Wait β³") |
|
similarity_model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2", cache_folder="/tmp/huggingface") |
|
embedding_model = SentenceTransformer("all-MiniLM-L6-v2", cache_folder="/tmp/huggingface") |
|
summarization_model = AutoModelForSeq2SeqLM.from_pretrained("google/long-t5-tglobal-base", cache_dir="/tmp/huggingface") |
|
summarization_tokenizer = AutoTokenizer.from_pretrained("google/long-t5-tglobal-base", cache_dir="/tmp/huggingface") |
|
|
|
|
|
try: |
|
recommendations_df = pd.read_csv("treatment_recommendations.csv") |
|
questions_df = pd.read_csv("symptom_questions.csv") |
|
except FileNotFoundError as e: |
|
st.error(f"β Missing dataset file: {e}") |
|
st.stop() |
|
|
|
|
|
treatment_embeddings = similarity_model.encode(recommendations_df["Disorder"].tolist(), convert_to_numpy=True) |
|
index = faiss.IndexFlatIP(treatment_embeddings.shape[1]) |
|
index.add(treatment_embeddings) |
|
|
|
|
|
question_embeddings = embedding_model.encode(questions_df["Questions"].tolist(), convert_to_numpy=True) |
|
question_index = faiss.IndexFlatL2(question_embeddings.shape[1]) |
|
question_index.add(question_embeddings) |
|
|
|
|
|
def retrieve_questions(user_input): |
|
input_embedding = embedding_model.encode([user_input], convert_to_numpy=True) |
|
_, indices = question_index.search(input_embedding, 1) |
|
|
|
if indices[0][0] == -1: |
|
return "I'm sorry, I couldn't find a relevant question." |
|
|
|
return questions_df["Questions"].iloc[indices[0][0]] |
|
|
|
|
|
def generate_empathetic_response(user_input, retrieved_question): |
|
prompt = f""" |
|
The user said: "{user_input}" |
|
Relevant Question: |
|
- {retrieved_question} |
|
|
|
You are an empathetic AI psychiatrist. Rephrase this question naturally. |
|
Example: |
|
- "I understand that anxiety can be overwhelming. Can you tell me more about when you started feeling this way?" |
|
|
|
Generate only one empathetic response. |
|
""" |
|
try: |
|
chat_completion = client.chat.completions.create( |
|
messages=[{"role": "system", "content": "You are an empathetic AI psychiatrist."}, |
|
{"role": "user", "content": prompt}], |
|
model="llama-3.3-70b-versatile", |
|
temperature=0.8, |
|
top_p=0.9 |
|
) |
|
return chat_completion.choices[0].message.content |
|
except Exception as e: |
|
return "I'm sorry, I couldn't process your request." |
|
|
|
|
|
def detect_disorders(chat_history): |
|
full_chat_text = " ".join(chat_history) |
|
text_embedding = similarity_model.encode([full_chat_text], convert_to_numpy=True) |
|
_, indices = index.search(text_embedding, 3) |
|
|
|
if indices[0][0] == -1: |
|
return ["No matching disorder found."] |
|
|
|
return [recommendations_df["Disorder"].iloc[i] for i in indices[0]] |
|
|
|
|
|
def summarize_chat(chat_history): |
|
chat_text = " ".join(chat_history) |
|
inputs = summarization_tokenizer("summarize: " + chat_text, return_tensors="pt", max_length=4096, truncation=True) |
|
summary_ids = summarization_model.generate(inputs.input_ids, max_length=500, num_beams=4, early_stopping=True) |
|
return summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True) |
|
|
|
|
|
st.title("MindSpark AI Psychiatrist π¬") |
|
|
|
|
|
if "chat_history" not in st.session_state: |
|
st.session_state.chat_history = [] |
|
|
|
|
|
user_input = st.text_input("You:", "") |
|
|
|
if st.button("Send"): |
|
if user_input: |
|
retrieved_question = retrieve_questions(user_input) |
|
empathetic_response = generate_empathetic_response(user_input, retrieved_question) |
|
|
|
st.session_state.chat_history.append(f"User: {user_input}") |
|
st.session_state.chat_history.append(f"AI: {empathetic_response}") |
|
|
|
|
|
st.write("### Chat History") |
|
for msg in st.session_state.chat_history[-6:]: |
|
st.text(msg) |
|
|
|
|
|
if st.button("Summarize Chat"): |
|
summary = summarize_chat(st.session_state.chat_history) |
|
st.write("### Chat Summary") |
|
st.text(summary) |
|
|
|
if st.button("Detect Disorders"): |
|
disorders = detect_disorders(st.session_state.chat_history) |
|
st.write("### Possible Disorders") |
|
st.text(", ".join(disorders)) |
|
|