Spaces:
Sleeping
Sleeping
import os | |
import streamlit as st | |
import pandas as pd | |
import faiss | |
from sentence_transformers import SentenceTransformer | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
from groq import Groq | |
# β Set cache directory | |
os.environ["HF_HOME"] = "/tmp/huggingface" | |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface" | |
os.environ["SENTENCE_TRANSFORMERS_HOME"] = "/tmp/huggingface" | |
# β Securely Fetch API Key | |
GROQ_API_KEY = os.getenv("GROQ_API_KEY") | |
if not GROQ_API_KEY: | |
st.error("β GROQ_API_KEY is missing. Set it as an environment variable.") | |
st.stop() | |
client = Groq(api_key=GROQ_API_KEY) | |
# β Load AI Models | |
similarity_model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2", cache_folder="/tmp/huggingface") | |
embedding_model = SentenceTransformer("all-MiniLM-L6-v2", cache_folder="/tmp/huggingface") | |
summarization_model = AutoModelForSeq2SeqLM.from_pretrained("google/long-t5-tglobal-base", cache_dir="/tmp/huggingface") | |
summarization_tokenizer = AutoTokenizer.from_pretrained("google/long-t5-tglobal-base", cache_dir="/tmp/huggingface") | |
# β Load datasets | |
try: | |
recommendations_df = pd.read_csv("treatment_recommendations.csv") | |
questions_df = pd.read_csv("symptom_questions.csv") | |
except FileNotFoundError as e: | |
st.error(f"β Missing dataset file: {e}") | |
st.stop() | |
# β FAISS Index for Disorder Detection | |
treatment_embeddings = similarity_model.encode(recommendations_df["Disorder"].tolist(), convert_to_numpy=True) | |
index = faiss.IndexFlatIP(treatment_embeddings.shape[1]) | |
index.add(treatment_embeddings) | |
# β FAISS Index for Question Retrieval | |
question_embeddings = embedding_model.encode(questions_df["Questions"].tolist(), convert_to_numpy=True) | |
question_index = faiss.IndexFlatL2(question_embeddings.shape[1]) | |
question_index.add(question_embeddings) | |
# β Function: Retrieve the most relevant question | |
def retrieve_questions(user_input): | |
input_embedding = embedding_model.encode([user_input], convert_to_numpy=True) | |
_, indices = question_index.search(input_embedding, 1) | |
if indices[0][0] == -1: | |
return "I'm sorry, I couldn't find a relevant question." | |
question_block = questions_df["Questions"].iloc[indices[0][0]] | |
return question_block.split(", ")[0] if ", " in question_block else question_block | |
# β Function: Generate empathetic response using Groq API | |
def generate_empathetic_response(user_input, retrieved_question): | |
prompt = f""" | |
The user said: "{user_input}" | |
Relevant Question: - {retrieved_question} | |
You are an empathetic AI psychiatrist. Rephrase this question naturally in a human-like way. | |
""" | |
try: | |
response = client.chat.completions.create( | |
messages=[ | |
{"role": "system", "content": "You are a helpful, empathetic AI psychiatrist."}, | |
{"role": "user", "content": prompt} | |
], | |
model="llama-3.3-70b-versatile", | |
temperature=0.8, | |
top_p=0.9 | |
) | |
return response.choices[0].message.content | |
except Exception as e: | |
return "I'm sorry, I couldn't process your request." | |
# β Function to detect disorders | |
def detect_disorders(chat_history): | |
"""Detect psychiatric disorders from full chat history.""" | |
if not chat_history: # β Handle empty chat history | |
return ["No input provided."] | |
full_chat_text = " ".join(chat_history).strip() | |
if not full_chat_text: # β Handle case where all messages are empty strings | |
return ["No meaningful text provided."] | |
try: | |
text_embedding = similarity_model.encode([full_chat_text], convert_to_numpy=True) | |
distances, indices = index.search(text_embedding, 3) | |
if indices is None or indices[0][0] == -1: | |
return ["No matching disorder found."] | |
disorders = [recommendations_df["Disorder"].iloc[i] for i in indices[0]] | |
return disorders | |
except Exception as e: | |
return [f"Error detecting disorders: {str(e)}"] # β Catch unexpected errors | |
# β Function to get treatment recommendations | |
def get_treatment(detected_disorders): | |
"""Retrieve treatment recommendations based on detected disorders.""" | |
treatments = { | |
disorder: recommendations_df[recommendations_df["Disorder"] == disorder]["Treatment Recommendation"].values[0] | |
for disorder in detected_disorders if disorder in recommendations_df["Disorder"].values | |
} | |
return treatments | |
# β Streamlit UI Setup | |
st.title("π§ MindSpark AI Psychiatric Assistant") | |
chat_history = st.session_state.get("chat_history", []) | |
user_input = st.text_input("Enter your message:") | |
if st.button("Ask AI") and user_input: | |
retrieved_question = retrieve_questions(user_input) | |
empathetic_response = generate_empathetic_response(user_input, retrieved_question) | |
chat_history.append(f"User: {user_input}") | |
chat_history.append(f"AI: {empathetic_response}") | |
st.session_state["chat_history"] = chat_history | |
st.subheader("Chat History") | |
for msg in chat_history: | |
st.write(msg) | |
if st.button("Summarize Chat"): | |
chat_text = " ".join(chat_history) | |
inputs = summarization_tokenizer("summarize: " + chat_text, return_tensors="pt", max_length=4096, truncation=True) | |
summary_ids = summarization_model.generate(inputs.input_ids, max_length=500, num_beams=4, early_stopping=True) | |
summary = summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
st.subheader("Chat Summary") | |
st.write(summary) | |
if st.button("Detect Disorders"): | |
if st.session_state["chat_history"]: | |
disorders = detect_disorders(st.session_state["chat_history"]) | |
st.subheader("Detected Disorders:") | |
for disorder in disorders: | |
st.write(f"- {disorder}") | |
else: | |
st.error("β Please enter chat history.") | |
if st.button("Get Treatment Recommendations"): | |
if st.session_state["chat_history"]: | |
detected_disorders = detect_disorders(st.session_state["chat_history"]) | |
treatments = get_treatment(detected_disorders) | |
st.subheader("Treatment Recommendations:") | |
for disorder, treatment in treatments.items(): | |
st.write(f"**{disorder}:** {treatment}") | |
else: | |
st.error("β Please enter chat history.") | |