mindspark121's picture
Update app.py
70ae897 verified
import os
import streamlit as st
import pandas as pd
import faiss
from sentence_transformers import SentenceTransformer
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from groq import Groq
# βœ… Set cache directory
os.environ["HF_HOME"] = "/tmp/huggingface"
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
os.environ["SENTENCE_TRANSFORMERS_HOME"] = "/tmp/huggingface"
# βœ… Securely Fetch API Key
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
if not GROQ_API_KEY:
st.error("❌ GROQ_API_KEY is missing. Set it as an environment variable.")
st.stop()
client = Groq(api_key=GROQ_API_KEY)
# βœ… Load AI Models
similarity_model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2", cache_folder="/tmp/huggingface")
embedding_model = SentenceTransformer("all-MiniLM-L6-v2", cache_folder="/tmp/huggingface")
summarization_model = AutoModelForSeq2SeqLM.from_pretrained("google/long-t5-tglobal-base", cache_dir="/tmp/huggingface")
summarization_tokenizer = AutoTokenizer.from_pretrained("google/long-t5-tglobal-base", cache_dir="/tmp/huggingface")
# βœ… Load datasets
try:
recommendations_df = pd.read_csv("treatment_recommendations.csv")
questions_df = pd.read_csv("symptom_questions.csv")
except FileNotFoundError as e:
st.error(f"❌ Missing dataset file: {e}")
st.stop()
# βœ… FAISS Index for Disorder Detection
treatment_embeddings = similarity_model.encode(recommendations_df["Disorder"].tolist(), convert_to_numpy=True)
index = faiss.IndexFlatIP(treatment_embeddings.shape[1])
index.add(treatment_embeddings)
# βœ… FAISS Index for Question Retrieval
question_embeddings = embedding_model.encode(questions_df["Questions"].tolist(), convert_to_numpy=True)
question_index = faiss.IndexFlatL2(question_embeddings.shape[1])
question_index.add(question_embeddings)
# βœ… Function: Retrieve the most relevant question
def retrieve_questions(user_input):
input_embedding = embedding_model.encode([user_input], convert_to_numpy=True)
_, indices = question_index.search(input_embedding, 1)
if indices[0][0] == -1:
return "I'm sorry, I couldn't find a relevant question."
question_block = questions_df["Questions"].iloc[indices[0][0]]
return question_block.split(", ")[0] if ", " in question_block else question_block
# βœ… Function: Generate empathetic response using Groq API
def generate_empathetic_response(user_input, retrieved_question):
prompt = f"""
The user said: "{user_input}"
Relevant Question: - {retrieved_question}
You are an empathetic AI psychiatrist. Rephrase this question naturally in a human-like way.
"""
try:
response = client.chat.completions.create(
messages=[
{"role": "system", "content": "You are a helpful, empathetic AI psychiatrist."},
{"role": "user", "content": prompt}
],
model="llama-3.3-70b-versatile",
temperature=0.8,
top_p=0.9
)
return response.choices[0].message.content
except Exception as e:
return "I'm sorry, I couldn't process your request."
# βœ… Function to detect disorders
def detect_disorders(chat_history):
"""Detect psychiatric disorders from full chat history."""
if not chat_history: # βœ… Handle empty chat history
return ["No input provided."]
full_chat_text = " ".join(chat_history).strip()
if not full_chat_text: # βœ… Handle case where all messages are empty strings
return ["No meaningful text provided."]
try:
text_embedding = similarity_model.encode([full_chat_text], convert_to_numpy=True)
distances, indices = index.search(text_embedding, 3)
if indices is None or indices[0][0] == -1:
return ["No matching disorder found."]
disorders = [recommendations_df["Disorder"].iloc[i] for i in indices[0]]
return disorders
except Exception as e:
return [f"Error detecting disorders: {str(e)}"] # βœ… Catch unexpected errors
# βœ… Function to get treatment recommendations
def get_treatment(detected_disorders):
"""Retrieve treatment recommendations based on detected disorders."""
treatments = {
disorder: recommendations_df[recommendations_df["Disorder"] == disorder]["Treatment Recommendation"].values[0]
for disorder in detected_disorders if disorder in recommendations_df["Disorder"].values
}
return treatments
# βœ… Streamlit UI Setup
st.title("🧠 MindSpark AI Psychiatric Assistant")
chat_history = st.session_state.get("chat_history", [])
user_input = st.text_input("Enter your message:")
if st.button("Ask AI") and user_input:
retrieved_question = retrieve_questions(user_input)
empathetic_response = generate_empathetic_response(user_input, retrieved_question)
chat_history.append(f"User: {user_input}")
chat_history.append(f"AI: {empathetic_response}")
st.session_state["chat_history"] = chat_history
st.subheader("Chat History")
for msg in chat_history:
st.write(msg)
if st.button("Summarize Chat"):
chat_text = " ".join(chat_history)
inputs = summarization_tokenizer("summarize: " + chat_text, return_tensors="pt", max_length=4096, truncation=True)
summary_ids = summarization_model.generate(inputs.input_ids, max_length=500, num_beams=4, early_stopping=True)
summary = summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
st.subheader("Chat Summary")
st.write(summary)
if st.button("Detect Disorders"):
if st.session_state["chat_history"]:
disorders = detect_disorders(st.session_state["chat_history"])
st.subheader("Detected Disorders:")
for disorder in disorders:
st.write(f"- {disorder}")
else:
st.error("❌ Please enter chat history.")
if st.button("Get Treatment Recommendations"):
if st.session_state["chat_history"]:
detected_disorders = detect_disorders(st.session_state["chat_history"])
treatments = get_treatment(detected_disorders)
st.subheader("Treatment Recommendations:")
for disorder, treatment in treatments.items():
st.write(f"**{disorder}:** {treatment}")
else:
st.error("❌ Please enter chat history.")