Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,99 @@
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
import pandas as pd
|
4 |
-
import
|
5 |
-
|
6 |
-
# Ensure FAISS is installed
|
7 |
-
try:
|
8 |
-
import faiss
|
9 |
-
except ImportError:
|
10 |
-
subprocess.run(["pip", "install", "faiss-cpu"])
|
11 |
-
import faiss
|
12 |
-
|
13 |
from sentence_transformers import SentenceTransformer
|
14 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
15 |
from groq import Groq
|
16 |
|
17 |
-
# Set
|
18 |
os.environ["HF_HOME"] = "/tmp/huggingface"
|
19 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
|
20 |
os.environ["SENTENCE_TRANSFORMERS_HOME"] = "/tmp/huggingface"
|
21 |
|
22 |
-
#
|
23 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
24 |
if not GROQ_API_KEY:
|
25 |
-
st.error("GROQ_API_KEY is missing. Set it as an environment variable.")
|
26 |
st.stop()
|
27 |
|
28 |
client = Groq(api_key=GROQ_API_KEY)
|
29 |
|
30 |
-
# Load AI Models
|
31 |
-
st.sidebar.header("Loading AI Models... Please Wait β³")
|
32 |
similarity_model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2", cache_folder="/tmp/huggingface")
|
33 |
embedding_model = SentenceTransformer("all-MiniLM-L6-v2", cache_folder="/tmp/huggingface")
|
34 |
summarization_model = AutoModelForSeq2SeqLM.from_pretrained("google/long-t5-tglobal-base", cache_dir="/tmp/huggingface")
|
35 |
summarization_tokenizer = AutoTokenizer.from_pretrained("google/long-t5-tglobal-base", cache_dir="/tmp/huggingface")
|
36 |
|
37 |
-
# Load
|
38 |
try:
|
39 |
recommendations_df = pd.read_csv("treatment_recommendations.csv")
|
40 |
questions_df = pd.read_csv("symptom_questions.csv")
|
41 |
except FileNotFoundError as e:
|
42 |
-
st.error(f"Missing dataset file: {e}")
|
43 |
st.stop()
|
44 |
|
45 |
-
# FAISS Index for
|
46 |
treatment_embeddings = similarity_model.encode(recommendations_df["Disorder"].tolist(), convert_to_numpy=True)
|
47 |
index = faiss.IndexFlatIP(treatment_embeddings.shape[1])
|
48 |
index.add(treatment_embeddings)
|
49 |
|
50 |
-
#
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
if "
|
54 |
-
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
st.session_state.chat_history.append(f"User: {user_input}")
|
60 |
-
st.session_state.chat_history.append(f"AI: [Response]")
|
61 |
|
62 |
-
st.
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
import pandas as pd
|
4 |
+
import faiss
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from sentence_transformers import SentenceTransformer
|
6 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
7 |
from groq import Groq
|
8 |
|
9 |
+
# β
Set cache directory
|
10 |
os.environ["HF_HOME"] = "/tmp/huggingface"
|
11 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
|
12 |
os.environ["SENTENCE_TRANSFORMERS_HOME"] = "/tmp/huggingface"
|
13 |
|
14 |
+
# β
Securely Fetch API Key
|
15 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
16 |
if not GROQ_API_KEY:
|
17 |
+
st.error("β GROQ_API_KEY is missing. Set it as an environment variable.")
|
18 |
st.stop()
|
19 |
|
20 |
client = Groq(api_key=GROQ_API_KEY)
|
21 |
|
22 |
+
# β
Load AI Models
|
|
|
23 |
similarity_model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2", cache_folder="/tmp/huggingface")
|
24 |
embedding_model = SentenceTransformer("all-MiniLM-L6-v2", cache_folder="/tmp/huggingface")
|
25 |
summarization_model = AutoModelForSeq2SeqLM.from_pretrained("google/long-t5-tglobal-base", cache_dir="/tmp/huggingface")
|
26 |
summarization_tokenizer = AutoTokenizer.from_pretrained("google/long-t5-tglobal-base", cache_dir="/tmp/huggingface")
|
27 |
|
28 |
+
# β
Load datasets
|
29 |
try:
|
30 |
recommendations_df = pd.read_csv("treatment_recommendations.csv")
|
31 |
questions_df = pd.read_csv("symptom_questions.csv")
|
32 |
except FileNotFoundError as e:
|
33 |
+
st.error(f"β Missing dataset file: {e}")
|
34 |
st.stop()
|
35 |
|
36 |
+
# β
FAISS Index for Disorder Detection
|
37 |
treatment_embeddings = similarity_model.encode(recommendations_df["Disorder"].tolist(), convert_to_numpy=True)
|
38 |
index = faiss.IndexFlatIP(treatment_embeddings.shape[1])
|
39 |
index.add(treatment_embeddings)
|
40 |
|
41 |
+
# β
FAISS Index for Question Retrieval
|
42 |
+
question_embeddings = embedding_model.encode(questions_df["Questions"].tolist(), convert_to_numpy=True)
|
43 |
+
question_index = faiss.IndexFlatL2(question_embeddings.shape[1])
|
44 |
+
question_index.add(question_embeddings)
|
45 |
+
|
46 |
+
# β
Function: Retrieve the most relevant question
|
47 |
+
def retrieve_questions(user_input):
|
48 |
+
input_embedding = embedding_model.encode([user_input], convert_to_numpy=True)
|
49 |
+
_, indices = question_index.search(input_embedding, 1)
|
50 |
+
if indices[0][0] == -1:
|
51 |
+
return "I'm sorry, I couldn't find a relevant question."
|
52 |
+
question_block = questions_df["Questions"].iloc[indices[0][0]]
|
53 |
+
return question_block.split(", ")[0] if ", " in question_block else question_block
|
54 |
+
|
55 |
+
# β
Function: Generate empathetic response using Groq API
|
56 |
+
def generate_empathetic_response(user_input, retrieved_question):
|
57 |
+
prompt = f"""
|
58 |
+
The user said: "{user_input}"
|
59 |
+
Relevant Question: - {retrieved_question}
|
60 |
+
You are an empathetic AI psychiatrist. Rephrase this question naturally in a human-like way.
|
61 |
+
"""
|
62 |
+
try:
|
63 |
+
response = client.chat.completions.create(
|
64 |
+
messages=[
|
65 |
+
{"role": "system", "content": "You are a helpful, empathetic AI psychiatrist."},
|
66 |
+
{"role": "user", "content": prompt}
|
67 |
+
],
|
68 |
+
model="llama-3.3-70b-versatile",
|
69 |
+
temperature=0.8,
|
70 |
+
top_p=0.9
|
71 |
+
)
|
72 |
+
return response.choices[0].message.content
|
73 |
+
except Exception as e:
|
74 |
+
return "I'm sorry, I couldn't process your request."
|
75 |
+
|
76 |
+
# β
Streamlit UI Setup
|
77 |
+
st.title("π§ MindSpark AI Psychiatric Assistant")
|
78 |
+
|
79 |
+
chat_history = st.session_state.get("chat_history", [])
|
80 |
+
user_input = st.text_input("Enter your message:")
|
81 |
|
82 |
+
if st.button("Ask AI") and user_input:
|
83 |
+
retrieved_question = retrieve_questions(user_input)
|
84 |
+
empathetic_response = generate_empathetic_response(user_input, retrieved_question)
|
85 |
+
chat_history.append(f"User: {user_input}")
|
86 |
+
chat_history.append(f"AI: {empathetic_response}")
|
87 |
+
st.session_state["chat_history"] = chat_history
|
88 |
|
89 |
+
st.subheader("Chat History")
|
90 |
+
for msg in chat_history:
|
91 |
+
st.write(msg)
|
|
|
|
|
92 |
|
93 |
+
if st.button("Summarize Chat"):
|
94 |
+
chat_text = " ".join(chat_history)
|
95 |
+
inputs = summarization_tokenizer("summarize: " + chat_text, return_tensors="pt", max_length=4096, truncation=True)
|
96 |
+
summary_ids = summarization_model.generate(inputs.input_ids, max_length=500, num_beams=4, early_stopping=True)
|
97 |
+
summary = summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
98 |
+
st.subheader("Chat Summary")
|
99 |
+
st.write(summary)
|