Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ from sentence_transformers import SentenceTransformer
|
|
4 |
import faiss
|
5 |
import pandas as pd
|
6 |
import random
|
7 |
-
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
@@ -14,6 +14,11 @@ embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
|
|
14 |
summarization_model = AutoModelForSeq2SeqLM.from_pretrained("google/long-t5-tglobal-base")
|
15 |
summarization_tokenizer = AutoTokenizer.from_pretrained("google/long-t5-tglobal-base")
|
16 |
|
|
|
|
|
|
|
|
|
|
|
17 |
# Load datasets
|
18 |
recommendations_df = pd.read_csv("treatment_recommendations.csv")
|
19 |
questions_df = pd.read_csv("symptom_questions.csv")
|
@@ -36,6 +41,36 @@ class SummaryRequest(BaseModel):
|
|
36 |
chat_history: list # List of messages
|
37 |
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
|
41 |
@app.post("/summarize_chat")
|
@@ -47,6 +82,7 @@ def summarize_chat(request: SummaryRequest):
|
|
47 |
summary = summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
48 |
return {"summary": summary}
|
49 |
|
|
|
50 |
@app.post("/detect_disorders")
|
51 |
def detect_disorders(request: SummaryRequest):
|
52 |
"""Detect psychiatric disorders from full chat history at the end."""
|
@@ -56,6 +92,7 @@ def detect_disorders(request: SummaryRequest):
|
|
56 |
disorders = [recommendations_df["Disorder"].iloc[i] for i in indices[0]]
|
57 |
return {"disorders": disorders}
|
58 |
|
|
|
59 |
@app.post("/get_treatment")
|
60 |
def get_treatment(request: SummaryRequest):
|
61 |
"""Retrieve treatment recommendations based on detected disorders."""
|
|
|
4 |
import faiss
|
5 |
import pandas as pd
|
6 |
import random
|
7 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoModelForCausalLM
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
|
|
14 |
summarization_model = AutoModelForSeq2SeqLM.from_pretrained("google/long-t5-tglobal-base")
|
15 |
summarization_tokenizer = AutoTokenizer.from_pretrained("google/long-t5-tglobal-base")
|
16 |
|
17 |
+
# New: Load Local LLM for Dynamic Emotional Responses (Mistral/Llama)
|
18 |
+
response_model_name = "mistralai/Mistral-7B-Instruct"
|
19 |
+
response_tokenizer = AutoTokenizer.from_pretrained(response_model_name)
|
20 |
+
response_model = AutoModelForCausalLM.from_pretrained(response_model_name)
|
21 |
+
|
22 |
# Load datasets
|
23 |
recommendations_df = pd.read_csv("treatment_recommendations.csv")
|
24 |
questions_df = pd.read_csv("symptom_questions.csv")
|
|
|
41 |
chat_history: list # List of messages
|
42 |
|
43 |
|
44 |
+
@app.post("/get_questions")
|
45 |
+
def get_recommended_questions(request: ChatRequest):
|
46 |
+
"""Retrieve the most relevant diagnostic questions with a dynamically generated conversational response."""
|
47 |
+
|
48 |
+
# Step 1: Encode the input message for FAISS search
|
49 |
+
input_embedding = embedding_model.encode([request.message], convert_to_numpy=True)
|
50 |
+
distances, indices = question_index.search(input_embedding, 3)
|
51 |
+
|
52 |
+
# Step 2: Retrieve the top 3 relevant questions
|
53 |
+
retrieved_questions = [questions_df["Questions"].iloc[i] for i in indices[0]]
|
54 |
+
|
55 |
+
# Step 3: Use a local LLM to generate context-aware empathetic responses
|
56 |
+
prompt = f"""
|
57 |
+
User: {request.message}
|
58 |
+
|
59 |
+
You are a compassionate psychiatric assistant. Before asking a diagnostic question, respond empathetically.
|
60 |
+
|
61 |
+
Questions:
|
62 |
+
1. {retrieved_questions[0]}
|
63 |
+
2. {retrieved_questions[1]}
|
64 |
+
3. {retrieved_questions[2]}
|
65 |
+
|
66 |
+
Generate a conversational response that introduces each question naturally.
|
67 |
+
"""
|
68 |
+
|
69 |
+
inputs = response_tokenizer(prompt, return_tensors="pt")
|
70 |
+
output = response_model.generate(**inputs, max_length=300)
|
71 |
+
enhanced_responses = response_tokenizer.decode(output[0], skip_special_tokens=True).split("\n")
|
72 |
+
|
73 |
+
return {"questions": enhanced_responses}
|
74 |
|
75 |
|
76 |
@app.post("/summarize_chat")
|
|
|
82 |
summary = summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
83 |
return {"summary": summary}
|
84 |
|
85 |
+
|
86 |
@app.post("/detect_disorders")
|
87 |
def detect_disorders(request: SummaryRequest):
|
88 |
"""Detect psychiatric disorders from full chat history at the end."""
|
|
|
92 |
disorders = [recommendations_df["Disorder"].iloc[i] for i in indices[0]]
|
93 |
return {"disorders": disorders}
|
94 |
|
95 |
+
|
96 |
@app.post("/get_treatment")
|
97 |
def get_treatment(request: SummaryRequest):
|
98 |
"""Retrieve treatment recommendations based on detected disorders."""
|