File size: 10,814 Bytes
373af33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import os
import json
import numpy as np
import torch
from imagebind import data
from imagebind.models.imagebind_model import ModalityType
from mogen.datasets.human_body_prior.body_model.body_model import BodyModel
from mogen.datasets.quaternion import qrot, qinv
from pytorch3d.transforms import axis_angle_to_matrix
def recover_root_rot_pos(data):
rot_vel = data[..., 0]
r_rot_ang = torch.zeros_like(rot_vel).to(data.device)
'''Get Y-axis rotation from rotation velocity'''
r_rot_ang[..., 1:] = rot_vel[..., :-1]
r_rot_ang = torch.cumsum(r_rot_ang, dim=-1)
r_rot_quat = torch.zeros(data.shape[:-1] + (4, )).to(data.device)
r_rot_quat[..., 0] = torch.cos(r_rot_ang)
r_rot_quat[..., 2] = torch.sin(r_rot_ang)
r_pos = torch.zeros(data.shape[:-1] + (3, )).to(data.device)
r_pos[..., 1:, [0, 2]] = data[..., :-1, 1:3]
'''Add Y-axis rotation to root position'''
r_pos = qrot(qinv(r_rot_quat), r_pos)
r_pos = torch.cumsum(r_pos, dim=-2)
r_pos[..., 1] = data[..., 3]
return r_rot_quat, r_pos
def recover_from_ric(data, joints_num):
r_rot_quat, r_pos = recover_root_rot_pos(data)
positions = data[..., 4:(joints_num - 1) * 3 + 4]
positions = positions.view(positions.shape[:-1] + (-1, 3))
'''Add Y-axis rotation to local joints'''
rot = qinv(r_rot_quat[..., None, :]).expand(positions.shape[:-1] + (4, ))
positions = qrot(rot, positions)
'''Add root XZ to joints'''
positions[..., 0] += r_pos[..., 0:1]
positions[..., 2] += r_pos[..., 2:3]
'''Concate root and joints'''
positions = torch.cat([r_pos.unsqueeze(-2), positions], dim=-2)
return positions
def create_data_item(meta_data,
root_dir,
basename,
tomato_repr=None,
keypoints3d=None,
expression=None,
smpl_rot=None,
bvh_rot=None):
assert os.path.exists(root_dir)
meta_dir = os.path.join(root_dir, 'metas')
motion_dir = os.path.join(root_dir, 'motions')
os.makedirs(meta_dir, exist_ok=True)
os.makedirs(motion_dir, exist_ok=True)
motion_data = {}
if tomato_repr is not None:
motion_data['tomato_repr'] = tomato_repr
if keypoints3d is not None:
motion_data['keypoints3d'] = keypoints3d
num_frames = keypoints3d.shape[0]
keypoints3d = keypoints3d.reshape((num_frames, -1))
if expression is not None:
motion_data['expression'] = expression
if smpl_rot is not None:
motion_data['smpl_rot'] = smpl_rot
if bvh_rot is not None:
motion_data['bvh_rot'] = bvh_rot
motion_path = os.path.join(motion_dir, basename + '.npz')
meta_path = os.path.join(meta_dir, basename + '.json')
np.savez_compressed(motion_path, **motion_data)
json.dump(meta_data, open(meta_path, 'w'), indent=4)
def extract_text_feature(model, text, device):
text_list = text
inputs = {
ModalityType.TEXT: data.load_and_transform_text(text_list, device),
}
with torch.no_grad():
text_word_feat, text_seq_feat = model(inputs)
return text_word_feat, text_seq_feat
def extract_image_feature(model, image_paths, device):
inputs = {
ModalityType.VISION: data.load_and_transform_vision_data(image_paths, device),
}
with torch.no_grad():
_, embeddings = model(inputs)
return embeddings
def extract_audio_feature(model, audio_paths, device):
inputs = {
ModalityType.AUDIO: data.load_and_transform_audio_data(audio_paths, device, clips_per_video=1),
}
with torch.no_grad():
audio_word_feat, audio_seq_feat = model(inputs)
return audio_word_feat, audio_seq_feat
def copy_repr_data(src_data, src_idx, num_src_joints, tgt_data, tgt_idx, num_tgt_joints):
# ric_data
tgt_base1 = 4 + (tgt_idx - 1) * 3
src_base1 = 4 + (src_idx - 1) * 3
tgt_data[:, tgt_base1: tgt_base1 + 3] = \
src_data[:, src_base1: src_base1 + 3]
# rot_data
tgt_base2 = 4 + (num_tgt_joints - 1) * 3 + (tgt_idx - 1) * 6
src_base2 = 4 + (num_src_joints - 1) * 3 + (src_idx - 1) * 6
tgt_data[:, tgt_base2: tgt_base2 + 6] = \
src_data[:, src_base2: src_base2 + 6]
# local velocity
tgt_base3 = 4 + (num_tgt_joints - 1) * 9 + tgt_idx * 3
src_base3 = 4 + (num_src_joints - 1) * 9 + src_idx * 3
tgt_data[:, tgt_base3: tgt_base3 + 3] = \
src_data[:, src_base3: src_base3 + 3]
def extract_repr_data(data, idx, num_joints):
assert idx > 0
base1 = 4 + (idx - 1) * 3
ric_data = data[:, base1: base1 + 3]
base2 = 4 + (num_joints - 1) * 3 + (idx - 1) * 6
rot_data = data[:, base2: base2 + 6]
base3 = 4 + (num_joints - 1) * 9 + idx * 3
local_vel = data[:, base3: base3 + 3]
if isinstance(data, torch.Tensor):
output = torch.cat((ric_data, rot_data, local_vel), dim=-1)
else:
output = np.concatenate((ric_data, rot_data, local_vel), axis=-1)
return output
def move_repr_data(data, idx, num_joints, output):
assert idx > 0
assert data.shape[1] == 12
base1 = 4 + (idx - 1) * 3
output[:, base1: base1 + 3] = data[:, :3]
base2 = 4 + (num_joints - 1) * 3 + (idx - 1) * 6
output[:, base2: base2 + 6] = data[:, 3: 9]
base3 = 4 + (num_joints - 1) * 9 + idx * 3
output[:, base3: base3 + 3] = data[:, 9:]
def estimate_repr_data(data, idx1, idx2, tgt, ratio, num_joints):
# direction: same as idx1
# position: |idx1 - tgt| / |idx1 - idx2| = ratio
assert 0 <= ratio <= 1, "ratio should be between 0 and 1"
assert 1 <= idx1 <= num_joints, "idx1 out of range"
assert 1 <= idx2 <= num_joints, "idx2 out of range"
assert 1 <= tgt <= num_joints, "tgt out of range"
# ric data
base1 = 4 + (idx1 - 1) * 3
base2 = 4 + (idx2 - 1) * 3
baset = 4 + (tgt - 1) * 3
pose1 = data[:, base1: base1 + 3]
pose2 = data[:, base2: base2 + 3]
poset = pose1 * (1 - ratio) + pose2 * ratio
data[:, baset: baset + 3] = poset
# rot_data
base1 = 4 + (num_joints - 1) * 3 + (idx1 - 1) * 6
baset = 4 + (num_joints - 1) * 3 + (tgt - 1) * 6
data[:, baset: baset + 6] = data[:, base1: base1 + 6]
# local velocity
base1 = 4 + (num_joints - 1) * 9 + idx1 * 3
base2 = 4 + (num_joints - 1) * 9 + idx2 * 3
baset = 4 + (num_joints - 1) * 9 + tgt * 3
vel1 = data[:, base1: base1 + 3]
vel2 = data[:, base2: base2 + 3]
velt = vel1 * (1 - ratio) + vel2 * ratio
data[:, baset: baset + 3] = velt
class BodyModelWrapper:
def __init__(self, device):
file_path = os.path.abspath(os.path.dirname(__file__))
body_model_dir = os.path.join(file_path, '../../data/motionverse/body_models')
male_bm_path = os.path.join(body_model_dir, 'smplh/male/model.npz')
male_dmpl_path = os.path.join(body_model_dir, 'dmpls/male/model.npz')
female_bm_path = os.path.join(body_model_dir, 'smplh/female/model.npz')
female_dmpl_path = os.path.join(body_model_dir, 'dmpls/female/model.npz')
neutral_bm_path = os.path.join(body_model_dir, 'smplh/neutral/model.npz')
neutral_dmpl_path = os.path.join(body_model_dir, 'dmpls/neutral/model.npz')
self.num_betas = 10 # number of body parameters
self.num_dmpls = 8 # number of DMPL parameters
self.male_bm = BodyModel(
bm_fname=male_bm_path,
num_betas=self.num_betas,
num_dmpls=self.num_dmpls,
dmpl_fname=male_dmpl_path).to(device)
self.female_bm = BodyModel(
bm_fname=female_bm_path,
num_betas=self.num_betas,
num_dmpls=self.num_dmpls,
dmpl_fname=female_dmpl_path).to(device)
self.neutral_bm = BodyModel(
bm_fname=neutral_bm_path,
num_betas=self.num_betas,
num_dmpls=self.num_dmpls,
dmpl_fname=neutral_dmpl_path).to(device)
self.device = device
def process_smplh(self, smplh_data, downsample=1):
poses = smplh_data['poses'][::downsample]
trans = smplh_data['trans'][::downsample]
betas = smplh_data['betas']
if len(betas.shape) == 1:
betas = betas[:self.num_betas][np.newaxis]
betas = np.repeat(betas, repeats=len(trans), axis=0)
else:
betas = betas[:, :self.num_betas]
body_parms = {
'root_orient': torch.Tensor(poses[:, :3]).to(self.device),
'pose_body': torch.Tensor(poses[:, 3:66]).to(self.device),
'pose_hand': torch.Tensor(poses[:, 66:]).to(self.device),
'trans': torch.Tensor(trans).to(self.device),
'betas': torch.Tensor(betas).to(self.device),
}
gender = smplh_data.get('gender', 'neutral')
if gender == 'male' or gender == 'm':
bm = self.male_bm
elif gender == 'female' or gender == 'f':
bm = self.female_bm
else:
bm = self.neutral_bm
with torch.no_grad():
body = bm(**body_parms)
pose_seq_np = body.Jtr.detach().cpu().numpy()
return pose_seq_np
def ang2joint(p3d0, pose,
parent={0: -1, 1: 0, 2: 0, 3: 0, 4: 1, 5: 2, 6: 3, 7: 4, 8: 5, 9: 6, 10: 7, 11: 8, 12: 9, 13: 9, 14: 9,
15: 12, 16: 13, 17: 14, 18: 16, 19: 17, 20: 18, 21: 19, 22: 20, 23: 21}):
"""
:param p3d0:[batch_size, joint_num, 3]
:param pose:[batch_size, joint_num, 3]
:param parent:
:return:
"""
def with_zeros(x):
"""
Append a [0, 0, 0, 1] tensor to a [3, 4] tensor.
Parameter:
---------
x: Tensor to be appended.
Return:
------
Tensor after appending of shape [4,4]
"""
ones = torch.tensor(
[[[0.0, 0.0, 0.0, 1.0]]], dtype=torch.float
).expand(x.shape[0], -1, -1).to(x.device)
ret = torch.cat((x, ones), dim=1)
return ret
batch_num = p3d0.shape[0]
jnum = len(parent.keys())
J = p3d0
R_cube_big = axis_angle_to_matrix(pose.contiguous().view(-1, 1, 3)).reshape(batch_num, -1, 3, 3)
results = []
results.append(
with_zeros(torch.cat((R_cube_big[:, 0], torch.reshape(J[:, 0, :], (-1, 3, 1))), dim=2))
)
for i in range(1, jnum):
results.append(
torch.matmul(
results[parent[i]],
with_zeros(
torch.cat(
(R_cube_big[:, i], torch.reshape(J[:, i, :] - J[:, parent[i], :], (-1, 3, 1))),
dim=2
)
)
)
)
stacked = torch.stack(results, dim=1)
J_transformed = stacked[:, :, :3, 3]
return J_transformed |