File size: 5,907 Bytes
373af33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
# coding=utf-8
# Copyright 2022 The IDEA Authors (Shunlin Lu and Ling-Hao Chen). All rights reserved.
#
# For all the datasets, be sure to read and follow their license agreements,
# and cite them accordingly.
# If the unifier is used in your research, please consider to cite as:
#
# @article{humantomato,
# title={HumanTOMATO: Text-aligned Whole-body Motion Generation},
# author={Lu, Shunlin and Chen, Ling-Hao and Zeng, Ailing and Lin, Jing and Zhang, Ruimao and Zhang, Lei and Shum, Heung-Yeung},
# journal={arxiv:2310.12978},
# year={2023}
# }
#
# @InProceedings{Guo_2022_CVPR,
# author = {Guo, Chuan and Zou, Shihao and Zuo, Xinxin and Wang, Sen and Ji, Wei and Li, Xingyu and Cheng, Li},
# title = {Generating Diverse and Natural 3D Human Motions From Text},
# booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
# month = {June},
# year = {2022},
# pages = {5152-5161}
# }
#
# Licensed under the IDEA License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://github.com/IDEA-Research/HumanTOMATO/blob/main/LICENSE
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. We provide a license to use the code,
# please read the specific details carefully.
#
# ------------------------------------------------------------------------------------------------
# Copyright (c) Chuan Guo.
# ------------------------------------------------------------------------------------------------
# Portions of this code were adapted from the following open-source project:
# https://github.com/EricGuo5513/HumanML3D
# ------------------------------------------------------------------------------------------------
import numpy as np
# Define a kinematic tree for the skeletal struture
kit_kinematic_chain = [[0, 11, 12, 13, 14, 15], [0, 16, 17, 18, 19, 20], [0, 1, 2, 3, 4], [3, 5, 6, 7], [3, 8, 9, 10]]
kit_raw_offsets = np.array(
[
[0, 0, 0],
[0, 1, 0],
[0, 1, 0],
[0, 1, 0],
[0, 1, 0],
[1, 0, 0],
[0, -1, 0],
[0, -1, 0],
[-1, 0, 0],
[0, -1, 0],
[0, -1, 0],
[1, 0, 0],
[0, -1, 0],
[0, -1, 0],
[0, 0, 1],
[0, 0, 1],
[-1, 0, 0],
[0, -1, 0],
[0, -1, 0],
[0, 0, 1],
[0, 0, 1]
]
)
t2m_raw_body_offsets = np.array([[0,0,0],
[1,0,0],
[-1,0,0],
[0,1,0],
[0,-1,0],
[0,-1,0],
[0,1,0],
[0,-1,0],
[0,-1,0],
[0,1,0],
[0,0,1],
[0,0,1],
[0,1,0],
[1,0,0],
[-1,0,0],
[0,0,1],
[0,-1,0],
[0,-1,0],
[0,-1,0],
[0,-1,0],
[0,-1,0],
[0,-1,0]])
t2m_raw_hand_offsets = np.array([[1, 0, 0], # left_index1
[1, 0, 0], # left_index2
[1, 0, 0], # left_index3
[1, 0, 0], # left_middle1
[1, 0, 0], # left_middle2
[1, 0, 0], # left_middle3
[1, 0, 0], # left_pinky1
[1, 0, 0], # left_pinky2
[1, 0, 0], # left_pinky3
[1, 0, 0], # left_ring1
[1, 0, 0], # left_ring2
[1, 0, 0], # left_ring3
[1, 0, 0], # left_thumb1
[1, 0, 0], # left_thumb2
[1, 0, 0], # left_thumb3
[-1, 0, 0], # right_index1
[-1, 0, 0], # right_index2
[-1, 0, 0], # right_index3
[-1, 0, 0], # right_middle1
[-1, 0, 0], # right_middle2
[-1, 0, 0], # right_middle3
[-1, 0, 0], # right_pinky1
[-1, 0, 0], # right_pinky2
[-1, 0, 0], # right_pinky3
[-1, 0, 0], # right_ring1
[-1, 0, 0], # right_ring2
[-1, 0, 0], # right_ring3
[-1, 0, 0], # right_thumb1
[-1, 0, 0], # right_thumb2
[-1, 0, 0],]) # right_thumb3
t2m_raw_offsets = np.concatenate(
(t2m_raw_body_offsets, t2m_raw_hand_offsets), axis=0)
t2m_kinematic_chain = [[0, 2, 5, 8, 11], [0, 1, 4, 7, 10], [0, 3, 6, 9, 12, 15], [9, 14, 17, 19, 21], [9, 13, 16, 18, 20]]
t2m_left_hand_chain = [[20, 22, 23, 24], [20, 34, 35, 36], [20, 25, 26, 27], [20, 31, 32, 33], [20, 28, 29, 30]]
t2m_right_hand_chain = [[21, 43, 44, 45], [21, 46, 47, 48], [21, 40, 41, 42], [21, 37, 38, 39], [21, 49, 50, 51]]
t2m_body_hand_kinematic_chain = t2m_kinematic_chain + t2m_left_hand_chain + t2m_right_hand_chain
kit_tgt_skel_id = '03950'
t2m_tgt_skel_id = '000021'
|