File size: 7,147 Bytes
12deb01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import torch
from torch.utils import data
import numpy as np
import os
from os.path import join as pjoin
import random
import codecs as cs
from tqdm import tqdm


class Text2MotionDataset(data.Dataset):
    """Dataset for Text2Motion generation task.

    """
    def __init__(self, opt, mean, std, split_file, times=1, w_vectorizer=None, eval_mode=False):
        self.opt = opt
        self.max_length = 20
        self.times = times
        self.w_vectorizer = w_vectorizer
        self.eval_mode = eval_mode
        min_motion_len = 40 if self.opt.dataset_name =='t2m' else 24

        joints_num = opt.joints_num

        data_dict = {}
        id_list = []
        with cs.open(split_file, 'r') as f:
            for line in f.readlines():
                id_list.append(line.strip())

        new_name_list = []
        length_list = []
        for name in tqdm(id_list):
            try:
                motion = np.load(pjoin(opt.motion_dir, name + '.npy'))
                if (len(motion)) < min_motion_len or (len(motion) >= 200):
                    continue
                text_data = []
                flag = False
                with cs.open(pjoin(opt.text_dir, name + '.txt')) as f:
                    for line in f.readlines():
                        text_dict = {}
                        line_split = line.strip().split('#')
                        caption = line_split[0]
                        tokens = line_split[1].split(' ')
                        f_tag = float(line_split[2])
                        to_tag = float(line_split[3])
                        f_tag = 0.0 if np.isnan(f_tag) else f_tag
                        to_tag = 0.0 if np.isnan(to_tag) else to_tag

                        text_dict['caption'] = caption
                        text_dict['tokens'] = tokens
                        if f_tag == 0.0 and to_tag == 0.0:
                            flag = True
                            text_data.append(text_dict)
                        else:
                            n_motion = motion[int(f_tag*20) : int(to_tag*20)]
                            if (len(n_motion)) < min_motion_len or (len(n_motion) >= 200):
                                continue
                            new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name
                            while new_name in data_dict:
                                new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name
                            data_dict[new_name] = {'motion': n_motion,
                                                    'length': len(n_motion),
                                                    'text':[text_dict]}
                            new_name_list.append(new_name)
                            length_list.append(len(n_motion))

                if flag:
                    data_dict[name] = {'motion': motion,
                                       'length': len(motion),
                                       'text':text_data}
                    new_name_list.append(name)
                    length_list.append(len(motion))
            except:
                # Some motion may not exist in KIT dataset
                pass


        name_list, length_list = zip(*sorted(zip(new_name_list, length_list), key=lambda x: x[1]))

        if opt.is_train:
            # root_rot_velocity (B, seq_len, 1)
            std[0:1] = std[0:1] / opt.feat_bias
            # root_linear_velocity (B, seq_len, 2)
            std[1:3] = std[1:3] / opt.feat_bias
            # root_y (B, seq_len, 1)
            std[3:4] = std[3:4] / opt.feat_bias
            # ric_data (B, seq_len, (joint_num - 1)*3)
            std[4: 4 + (joints_num - 1) * 3] = std[4: 4 + (joints_num - 1) * 3] / 1.0
            # rot_data (B, seq_len, (joint_num - 1)*6)
            std[4 + (joints_num - 1) * 3: 4 + (joints_num - 1) * 9] = std[4 + (joints_num - 1) * 3: 4 + (
                        joints_num - 1) * 9] / 1.0
            # local_velocity (B, seq_len, joint_num*3)
            std[4 + (joints_num - 1) * 9: 4 + (joints_num - 1) * 9 + joints_num * 3] = std[
                                                                                       4 + (joints_num - 1) * 9: 4 + (
                                                                                                   joints_num - 1) * 9 + joints_num * 3] / 1.0
            # foot contact (B, seq_len, 4)
            std[4 + (joints_num - 1) * 9 + joints_num * 3:] = std[
                                                              4 + (joints_num - 1) * 9 + joints_num * 3:] / opt.feat_bias

            assert 4 + (joints_num - 1) * 9 + joints_num * 3 + 4 == mean.shape[-1]
            np.save(pjoin(opt.meta_dir, 'mean.npy'), mean)
            np.save(pjoin(opt.meta_dir, 'std.npy'), std)

        self.mean = mean
        self.std = std
        self.length_arr = np.array(length_list)
        self.data_dict = data_dict
        self.name_list = name_list

    def inv_transform(self, data):
        return data * self.std + self.mean

    def real_len(self):
        return len(self.data_dict)

    def __len__(self):
        return self.real_len() * self.times

    def __getitem__(self, item):
        idx = item % self.real_len()
        data = self.data_dict[self.name_list[idx]]
        motion, m_length, text_list = data['motion'], data['length'], data['text']
        # Randomly select a caption
        text_data = random.choice(text_list)
        caption = text_data['caption']

        max_motion_length = self.opt.max_motion_length
        if m_length >= self.opt.max_motion_length:
            idx = random.randint(0, len(motion) - max_motion_length)
            motion = motion[idx: idx + max_motion_length]
        else:
            padding_len = max_motion_length - m_length
            D = motion.shape[1]
            padding_zeros = np.zeros((padding_len, D))
            motion = np.concatenate((motion, padding_zeros), axis=0)

        assert len(motion) == max_motion_length
        "Z Normalization"
        motion = (motion - self.mean) / self.std

        if self.eval_mode:
            tokens = text_data['tokens']
            if len(tokens) < self.opt.max_text_len:
                # pad with "unk"
                tokens = ['sos/OTHER'] + tokens + ['eos/OTHER']
                sent_len = len(tokens)
                tokens = tokens + ['unk/OTHER'] * (self.opt.max_text_len + 2 - sent_len)
            else:
                # crop
                tokens = tokens[:self.opt.max_text_len]
                tokens = ['sos/OTHER'] + tokens + ['eos/OTHER']
                sent_len = len(tokens)
            pos_one_hots = []
            word_embeddings = []
            for token in tokens:
                word_emb, pos_oh = self.w_vectorizer[token]
                pos_one_hots.append(pos_oh[None, :])
                word_embeddings.append(word_emb[None, :])
            pos_one_hots = np.concatenate(pos_one_hots, axis=0)
            word_embeddings = np.concatenate(word_embeddings, axis=0)
            return word_embeddings, pos_one_hots, caption, sent_len, motion, m_length
        return caption, motion, m_length