Spaces:
Runtime error
Runtime error
File size: 11,730 Bytes
12deb01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
from datetime import datetime
import numpy as np
import torch
from datasets import get_dataset_motion_loader, get_motion_loader
from models import MotionTransformer
from utils.get_opt import get_opt
from utils.metrics import *
from datasets import EvaluatorModelWrapper
from collections import OrderedDict
from utils.plot_script import *
from utils import paramUtil
from utils.utils import *
from trainers import DDPMTrainer
from os.path import join as pjoin
import sys
def build_models(opt, dim_pose):
encoder = MotionTransformer(
input_feats=dim_pose,
num_frames=opt.max_motion_length,
num_layers=opt.num_layers,
latent_dim=opt.latent_dim,
no_clip=opt.no_clip,
no_eff=opt.no_eff)
return encoder
torch.multiprocessing.set_sharing_strategy('file_system')
def evaluate_matching_score(motion_loaders, file):
match_score_dict = OrderedDict({})
R_precision_dict = OrderedDict({})
activation_dict = OrderedDict({})
# print(motion_loaders.keys())
print('========== Evaluating Matching Score ==========')
for motion_loader_name, motion_loader in motion_loaders.items():
all_motion_embeddings = []
score_list = []
all_size = 0
matching_score_sum = 0
top_k_count = 0
# print(motion_loader_name)
with torch.no_grad():
for idx, batch in enumerate(motion_loader):
word_embeddings, pos_one_hots, _, sent_lens, motions, m_lens, _ = batch
text_embeddings, motion_embeddings = eval_wrapper.get_co_embeddings(
word_embs=word_embeddings,
pos_ohot=pos_one_hots,
cap_lens=sent_lens,
motions=motions,
m_lens=m_lens
)
dist_mat = euclidean_distance_matrix(text_embeddings.cpu().numpy(),
motion_embeddings.cpu().numpy())
matching_score_sum += dist_mat.trace()
argsmax = np.argsort(dist_mat, axis=1)
top_k_mat = calculate_top_k(argsmax, top_k=3)
top_k_count += top_k_mat.sum(axis=0)
all_size += text_embeddings.shape[0]
all_motion_embeddings.append(motion_embeddings.cpu().numpy())
all_motion_embeddings = np.concatenate(all_motion_embeddings, axis=0)
matching_score = matching_score_sum / all_size
R_precision = top_k_count / all_size
match_score_dict[motion_loader_name] = matching_score
R_precision_dict[motion_loader_name] = R_precision
activation_dict[motion_loader_name] = all_motion_embeddings
print(f'---> [{motion_loader_name}] Matching Score: {matching_score:.4f}')
print(f'---> [{motion_loader_name}] Matching Score: {matching_score:.4f}', file=file, flush=True)
line = f'---> [{motion_loader_name}] R_precision: '
for i in range(len(R_precision)):
line += '(top %d): %.4f ' % (i+1, R_precision[i])
print(line)
print(line, file=file, flush=True)
return match_score_dict, R_precision_dict, activation_dict
def evaluate_fid(groundtruth_loader, activation_dict, file):
eval_dict = OrderedDict({})
gt_motion_embeddings = []
print('========== Evaluating FID ==========')
with torch.no_grad():
for idx, batch in enumerate(groundtruth_loader):
_, _, _, sent_lens, motions, m_lens, _ = batch
motion_embeddings = eval_wrapper.get_motion_embeddings(
motions=motions,
m_lens=m_lens
)
gt_motion_embeddings.append(motion_embeddings.cpu().numpy())
gt_motion_embeddings = np.concatenate(gt_motion_embeddings, axis=0)
gt_mu, gt_cov = calculate_activation_statistics(gt_motion_embeddings)
# print(gt_mu)
for model_name, motion_embeddings in activation_dict.items():
mu, cov = calculate_activation_statistics(motion_embeddings)
# print(mu)
fid = calculate_frechet_distance(gt_mu, gt_cov, mu, cov)
print(f'---> [{model_name}] FID: {fid:.4f}')
print(f'---> [{model_name}] FID: {fid:.4f}', file=file, flush=True)
eval_dict[model_name] = fid
return eval_dict
def evaluate_diversity(activation_dict, file):
eval_dict = OrderedDict({})
print('========== Evaluating Diversity ==========')
for model_name, motion_embeddings in activation_dict.items():
diversity = calculate_diversity(motion_embeddings, diversity_times)
eval_dict[model_name] = diversity
print(f'---> [{model_name}] Diversity: {diversity:.4f}')
print(f'---> [{model_name}] Diversity: {diversity:.4f}', file=file, flush=True)
return eval_dict
def evaluate_multimodality(mm_motion_loaders, file):
eval_dict = OrderedDict({})
print('========== Evaluating MultiModality ==========')
for model_name, mm_motion_loader in mm_motion_loaders.items():
mm_motion_embeddings = []
with torch.no_grad():
for idx, batch in enumerate(mm_motion_loader):
# (1, mm_replications, dim_pos)
motions, m_lens = batch
motion_embedings = eval_wrapper.get_motion_embeddings(motions[0], m_lens[0])
mm_motion_embeddings.append(motion_embedings.unsqueeze(0))
if len(mm_motion_embeddings) == 0:
multimodality = 0
else:
mm_motion_embeddings = torch.cat(mm_motion_embeddings, dim=0).cpu().numpy()
multimodality = calculate_multimodality(mm_motion_embeddings, mm_num_times)
print(f'---> [{model_name}] Multimodality: {multimodality:.4f}')
print(f'---> [{model_name}] Multimodality: {multimodality:.4f}', file=file, flush=True)
eval_dict[model_name] = multimodality
return eval_dict
def get_metric_statistics(values):
mean = np.mean(values, axis=0)
std = np.std(values, axis=0)
conf_interval = 1.96 * std / np.sqrt(replication_times)
return mean, conf_interval
def evaluation(log_file):
with open(log_file, 'w') as f:
all_metrics = OrderedDict({'Matching Score': OrderedDict({}),
'R_precision': OrderedDict({}),
'FID': OrderedDict({}),
'Diversity': OrderedDict({}),
'MultiModality': OrderedDict({})})
for replication in range(replication_times):
motion_loaders = {}
mm_motion_loaders = {}
motion_loaders['ground truth'] = gt_loader
for motion_loader_name, motion_loader_getter in eval_motion_loaders.items():
motion_loader, mm_motion_loader = motion_loader_getter()
motion_loaders[motion_loader_name] = motion_loader
mm_motion_loaders[motion_loader_name] = mm_motion_loader
print(f'==================== Replication {replication} ====================')
print(f'==================== Replication {replication} ====================', file=f, flush=True)
print(f'Time: {datetime.now()}')
print(f'Time: {datetime.now()}', file=f, flush=True)
mat_score_dict, R_precision_dict, acti_dict = evaluate_matching_score(motion_loaders, f)
print(f'Time: {datetime.now()}')
print(f'Time: {datetime.now()}', file=f, flush=True)
fid_score_dict = evaluate_fid(gt_loader, acti_dict, f)
print(f'Time: {datetime.now()}')
print(f'Time: {datetime.now()}', file=f, flush=True)
div_score_dict = evaluate_diversity(acti_dict, f)
print(f'Time: {datetime.now()}')
print(f'Time: {datetime.now()}', file=f, flush=True)
mm_score_dict = evaluate_multimodality(mm_motion_loaders, f)
print(f'!!! DONE !!!')
print(f'!!! DONE !!!', file=f, flush=True)
for key, item in mat_score_dict.items():
if key not in all_metrics['Matching Score']:
all_metrics['Matching Score'][key] = [item]
else:
all_metrics['Matching Score'][key] += [item]
for key, item in R_precision_dict.items():
if key not in all_metrics['R_precision']:
all_metrics['R_precision'][key] = [item]
else:
all_metrics['R_precision'][key] += [item]
for key, item in fid_score_dict.items():
if key not in all_metrics['FID']:
all_metrics['FID'][key] = [item]
else:
all_metrics['FID'][key] += [item]
for key, item in div_score_dict.items():
if key not in all_metrics['Diversity']:
all_metrics['Diversity'][key] = [item]
else:
all_metrics['Diversity'][key] += [item]
for key, item in mm_score_dict.items():
if key not in all_metrics['MultiModality']:
all_metrics['MultiModality'][key] = [item]
else:
all_metrics['MultiModality'][key] += [item]
# print(all_metrics['Diversity'])
for metric_name, metric_dict in all_metrics.items():
print('========== %s Summary ==========' % metric_name)
print('========== %s Summary ==========' % metric_name, file=f, flush=True)
for model_name, values in metric_dict.items():
# print(metric_name, model_name)
mean, conf_interval = get_metric_statistics(np.array(values))
# print(mean, mean.dtype)
if isinstance(mean, np.float64) or isinstance(mean, np.float32):
print(f'---> [{model_name}] Mean: {mean:.4f} CInterval: {conf_interval:.4f}')
print(f'---> [{model_name}] Mean: {mean:.4f} CInterval: {conf_interval:.4f}', file=f, flush=True)
elif isinstance(mean, np.ndarray):
line = f'---> [{model_name}]'
for i in range(len(mean)):
line += '(top %d) Mean: %.4f CInt: %.4f;' % (i+1, mean[i], conf_interval[i])
print(line)
print(line, file=f, flush=True)
if __name__ == '__main__':
mm_num_samples = 100
mm_num_repeats = 30
mm_num_times = 10
diversity_times = 300
replication_times = 1
batch_size = 32
opt_path = sys.argv[1]
dataset_opt_path = opt_path
try:
device_id = int(sys.argv[2])
except:
device_id = 0
device = torch.device('cuda:%d' % device_id if torch.cuda.is_available() else 'cpu')
torch.cuda.set_device(device_id)
gt_loader, gt_dataset = get_dataset_motion_loader(dataset_opt_path, batch_size, device)
wrapper_opt = get_opt(dataset_opt_path, device)
eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
opt = get_opt(opt_path, device)
encoder = build_models(opt, opt.dim_pose)
trainer = DDPMTrainer(opt, encoder)
eval_motion_loaders = {
'text2motion': lambda: get_motion_loader(
opt,
batch_size,
trainer,
gt_dataset,
mm_num_samples,
mm_num_repeats
)
}
log_file = './t2m_evaluation.log'
evaluation(log_file)
|