import argparse import os import torch from mmcv.runner import get_dist_info import torch.distributed as dist class BaseOptions(): def __init__(self): self.parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) self.initialized = False def initialize(self): self.parser.add_argument('--name', type=str, default="test", help='Name of this trial') self.parser.add_argument('--decomp_name', type=str, default="Decomp_SP001_SM001_H512", help='Name of autoencoder model') self.parser.add_argument("--gpu_id", type=int, default=-1, help='GPU id') self.parser.add_argument("--distributed", action="store_true", help='Weather to use DDP training') self.parser.add_argument('--dataset_name', type=str, default='t2m', help='Dataset Name') self.parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here') self.parser.add_argument("--unit_length", type=int, default=4, help="Motions are cropped to the maximum times of unit_length") self.parser.add_argument("--max_text_len", type=int, default=20, help="Maximum length of text description") self.parser.add_argument('--text_enc_mod', type=str, default='bigru') self.parser.add_argument('--estimator_mod', type=str, default='bigru') self.parser.add_argument('--dim_text_hidden', type=int, default=512, help='Dimension of hidden unit in text encoder') self.parser.add_argument('--dim_att_vec', type=int, default=512, help='Dimension of attention vector') self.parser.add_argument('--dim_z', type=int, default=128, help='Dimension of latent Gaussian vector') self.parser.add_argument('--n_layers_pri', type=int, default=1, help='Number of layers in prior network') self.parser.add_argument('--n_layers_pos', type=int, default=1, help='Number of layers in posterior network') self.parser.add_argument('--n_layers_dec', type=int, default=1, help='Number of layers in generator') self.parser.add_argument('--dim_pri_hidden', type=int, default=1024, help='Dimension of hidden unit in prior network') self.parser.add_argument('--dim_pos_hidden', type=int, default=1024, help='Dimension of hidden unit in posterior network') self.parser.add_argument('--dim_dec_hidden', type=int, default=1024, help='Dimension of hidden unit in generator') self.parser.add_argument('--dim_movement_enc_hidden', type=int, default=512, help='Dimension of hidden in AutoEncoder(encoder)') self.parser.add_argument('--dim_movement_dec_hidden', type=int, default=512, help='Dimension of hidden in AutoEncoder(decoder)') self.parser.add_argument('--dim_movement_latent', type=int, default=512, help='Dimension of motion snippet') self.initialized = True def parse(self): if not self.initialized: self.initialize() self.opt = self.parser.parse_args() self.opt.is_train = self.is_train if self.opt.gpu_id != -1: # self.opt.gpu_id = int(self.opt.gpu_id) torch.cuda.set_device(self.opt.gpu_id) args = vars(self.opt) if args["distributed"]: init_dist('slurm') rank, world_size = get_dist_info() if rank == 0: print('------------ Options -------------') for k, v in sorted(args.items()): print('%s: %s' % (str(k), str(v))) print('-------------- End ----------------') if self.is_train: # save to the disk expr_dir = os.path.join(self.opt.checkpoints_dir, self.opt.dataset_name, self.opt.name) if not os.path.exists(expr_dir): os.makedirs(expr_dir) file_name = os.path.join(expr_dir, 'opt.txt') with open(file_name, 'wt') as opt_file: opt_file.write('------------ Options -------------\n') for k, v in sorted(args.items()): opt_file.write('%s: %s\n' % (str(k), str(v))) opt_file.write('-------------- End ----------------\n') if world_size > 1: dist.barrier() return self.opt