Spaces:
Running
Running
initial commit
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +1 -0
- README.md +6 -9
- app.py +123 -0
- configs/_base_/datasets/human_ml3d_bs128.py +60 -0
- configs/_base_/datasets/kit_ml_bs128.py +60 -0
- configs/mdm/mdm_t2m_official.py +67 -0
- configs/motiondiffuse/motiondiffuse_kit.py +89 -0
- configs/motiondiffuse/motiondiffuse_t2m.py +90 -0
- configs/remodiffuse/remodiffuse_kit.py +141 -0
- configs/remodiffuse/remodiffuse_t2m.py +141 -0
- data/database/t2m_text_train.npz +3 -0
- data/datasets/human_ml3d/mean.npy +3 -0
- data/datasets/human_ml3d/std.npy +3 -0
- data/datasets/kit_ml/mean.npy +3 -0
- data/datasets/kit_ml/std.npy +3 -0
- logs/mdm/mdm_t2m/latest.pth +3 -0
- logs/motiondiffuse/motiondiffuse_t2m/latest.pth +3 -0
- logs/remodiffuse/remodiffuse_t2m/latest.pth +3 -0
- mogen/__init__.py +56 -0
- mogen/apis/__init__.py +13 -0
- mogen/apis/test.py +160 -0
- mogen/apis/train.py +165 -0
- mogen/core/__init__.py +0 -0
- mogen/core/distributed_wrapper.py +136 -0
- mogen/core/evaluation/__init__.py +4 -0
- mogen/core/evaluation/builder.py +29 -0
- mogen/core/evaluation/eval_hooks.py +138 -0
- mogen/core/evaluation/evaluators/__init__.py +0 -0
- mogen/core/evaluation/evaluators/base_evaluator.py +144 -0
- mogen/core/evaluation/evaluators/diversity_evaluator.py +52 -0
- mogen/core/evaluation/evaluators/fid_evaluator.py +58 -0
- mogen/core/evaluation/evaluators/matching_score_evaluator.py +71 -0
- mogen/core/evaluation/evaluators/multimodality_evaluator.py +63 -0
- mogen/core/evaluation/evaluators/precision_evaluator.py +74 -0
- mogen/core/evaluation/get_model.py +46 -0
- mogen/core/evaluation/utils.py +130 -0
- mogen/core/optimizer/__init__.py +3 -0
- mogen/core/optimizer/builder.py +52 -0
- mogen/datasets/__init__.py +11 -0
- mogen/datasets/base_dataset.py +117 -0
- mogen/datasets/builder.py +113 -0
- mogen/datasets/dataset_wrappers.py +42 -0
- mogen/datasets/pipelines/__init__.py +18 -0
- mogen/datasets/pipelines/compose.py +42 -0
- mogen/datasets/pipelines/formatting.py +134 -0
- mogen/datasets/pipelines/transforms.py +120 -0
- mogen/datasets/samplers/__init__.py +3 -0
- mogen/datasets/samplers/distributed_sampler.py +42 -0
- mogen/datasets/text_motion_dataset.py +93 -0
- mogen/models/__init__.py +7 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
**__pycache__**
|
README.md
CHANGED
@@ -1,12 +1,9 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
colorTo: gray
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
title: MotionDiffuse
|
2 |
+
emoji: 🏢
|
3 |
+
colorFrom: blue
|
4 |
+
colorTo: red
|
|
|
5 |
sdk: gradio
|
6 |
+
sdk_version: 3.44.1
|
7 |
app_file: app.py
|
8 |
pinned: false
|
9 |
+
license: mit
|
|
|
|
app.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
os.makedirs("outputs", exist_ok=True)
|
6 |
+
sys.path.insert(0, '.')
|
7 |
+
|
8 |
+
import argparse
|
9 |
+
import os.path as osp
|
10 |
+
import mmcv
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
from mogen.models import build_architecture
|
14 |
+
from mmcv.runner import load_checkpoint
|
15 |
+
from mmcv.parallel import MMDataParallel
|
16 |
+
from mogen.utils.plot_utils import (
|
17 |
+
recover_from_ric,
|
18 |
+
plot_3d_motion,
|
19 |
+
t2m_kinematic_chain
|
20 |
+
)
|
21 |
+
from scipy.ndimage import gaussian_filter
|
22 |
+
from IPython.display import Image
|
23 |
+
|
24 |
+
|
25 |
+
def motion_temporal_filter(motion, sigma=1):
|
26 |
+
motion = motion.reshape(motion.shape[0], -1)
|
27 |
+
for i in range(motion.shape[1]):
|
28 |
+
motion[:, i] = gaussian_filter(motion[:, i], sigma=sigma, mode="nearest")
|
29 |
+
return motion.reshape(motion.shape[0], -1, 3)
|
30 |
+
|
31 |
+
|
32 |
+
def plot_t2m(data, result_path, npy_path, caption):
|
33 |
+
joint = recover_from_ric(torch.from_numpy(data).float(), 22).numpy()
|
34 |
+
joint = motion_temporal_filter(joint, sigma=2.5)
|
35 |
+
plot_3d_motion(result_path, t2m_kinematic_chain, joint, title=caption, fps=20)
|
36 |
+
if npy_path is not None:
|
37 |
+
np.save(npy_path, joint)
|
38 |
+
|
39 |
+
def create_remodiffuse():
|
40 |
+
config_path = "configs/remodiffuse/remodiffuse_t2m.py"
|
41 |
+
ckpt_path = "logs/remodiffuse/remodiffuse_t2m/latest.pth"
|
42 |
+
cfg = mmcv.Config.fromfile(config_path)
|
43 |
+
model = build_architecture(cfg.model)
|
44 |
+
load_checkpoint(model, ckpt_path, map_location='cpu')
|
45 |
+
model.cpu()
|
46 |
+
model.eval()
|
47 |
+
return model
|
48 |
+
|
49 |
+
def create_motiondiffuse():
|
50 |
+
config_path = "configs/motiondiffuse/motiondiffuse_t2m.py"
|
51 |
+
ckpt_path = "logs/motiondiffuse/motiondiffuse_t2m/latest.pth"
|
52 |
+
cfg = mmcv.Config.fromfile(config_path)
|
53 |
+
model = build_architecture(cfg.model)
|
54 |
+
load_checkpoint(model, ckpt_path, map_location='cpu')
|
55 |
+
model.cpu()
|
56 |
+
model.eval()
|
57 |
+
return model
|
58 |
+
|
59 |
+
def create_mdm():
|
60 |
+
config_path = "configs/mdm/mdm_t2m_official.py"
|
61 |
+
ckpt_path = "logs/mdm/mdm_t2m/latest.pth"
|
62 |
+
cfg = mmcv.Config.fromfile(config_path)
|
63 |
+
model = build_architecture(cfg.model)
|
64 |
+
load_checkpoint(model, ckpt_path, map_location='cpu')
|
65 |
+
model.cpu()
|
66 |
+
model.eval()
|
67 |
+
return model
|
68 |
+
|
69 |
+
model_remodiffuse = create_remodiffuse()
|
70 |
+
# model_motiondiffuse = create_motiondiffuse()
|
71 |
+
# model_mdm = create_mdm()
|
72 |
+
|
73 |
+
mean_path = "data/datasets/human_ml3d/mean.npy"
|
74 |
+
std_path = "data/datasets/human_ml3d/std.npy"
|
75 |
+
mean = np.load(mean_path)
|
76 |
+
std = np.load(std_path)
|
77 |
+
|
78 |
+
|
79 |
+
def show_generation_result(model, text, motion_length, result_path):
|
80 |
+
device = 'cpu'
|
81 |
+
motion = torch.zeros(1, motion_length, 263).to(device)
|
82 |
+
motion_mask = torch.ones(1, motion_length).to(device)
|
83 |
+
motion_length = torch.Tensor([motion_length]).long().to(device)
|
84 |
+
model = model.to(device)
|
85 |
+
input = {
|
86 |
+
'motion': motion,
|
87 |
+
'motion_mask': motion_mask,
|
88 |
+
'motion_length': motion_length,
|
89 |
+
'motion_metas': [{'text': text}],
|
90 |
+
}
|
91 |
+
|
92 |
+
all_pred_motion = []
|
93 |
+
with torch.no_grad():
|
94 |
+
input['inference_kwargs'] = {}
|
95 |
+
output_list = []
|
96 |
+
output = model(**input)[0]['pred_motion']
|
97 |
+
pred_motion = output.cpu().detach().numpy()
|
98 |
+
pred_motion = pred_motion * std + mean
|
99 |
+
|
100 |
+
plot_t2m(pred_motion, result_path, None, text)
|
101 |
+
|
102 |
+
def generate(prompt, length):
|
103 |
+
if not os.path.exists("outputs"):
|
104 |
+
os.mkdir("outputs")
|
105 |
+
result_path = "outputs/" + str(hash(prompt)) + ".mp4"
|
106 |
+
show_generation_result(model_remodiffuse, prompt, length, result_path)
|
107 |
+
return result_path
|
108 |
+
|
109 |
+
demo = gr.Interface(
|
110 |
+
fn=generate,
|
111 |
+
inputs=["text", gr.Slider(20, 196, value=60)],
|
112 |
+
examples=[
|
113 |
+
["the man throws a punch with each hand.", 58],
|
114 |
+
["a person spins quickly and takes off running.", 29],
|
115 |
+
["a person quickly waves with their right hand", 46],
|
116 |
+
["a person performing a slight bow", 89],
|
117 |
+
],
|
118 |
+
outputs="video",
|
119 |
+
title="ReMoDiffuse: Retrieval-Augmented Motion Diffusion Model",
|
120 |
+
description="This is an interactive demo for ReMoDiffuse. For more information, feel free to visit our project page(https://mingyuan-zhang.github.io/projects/ReMoDiffuse.html).")
|
121 |
+
|
122 |
+
demo.queue()
|
123 |
+
demo.launch()
|
configs/_base_/datasets/human_ml3d_bs128.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
data_keys = ['motion', 'motion_mask', 'motion_length', 'clip_feat']
|
3 |
+
meta_keys = ['text', 'token']
|
4 |
+
train_pipeline = [
|
5 |
+
dict(
|
6 |
+
type='Normalize',
|
7 |
+
mean_path='data/datasets/human_ml3d/mean.npy',
|
8 |
+
std_path='data/datasets/human_ml3d/std.npy'),
|
9 |
+
dict(type='Crop', crop_size=196),
|
10 |
+
dict(type='ToTensor', keys=data_keys),
|
11 |
+
dict(type='Collect', keys=data_keys, meta_keys=meta_keys)
|
12 |
+
]
|
13 |
+
|
14 |
+
data = dict(
|
15 |
+
samples_per_gpu=128,
|
16 |
+
workers_per_gpu=1,
|
17 |
+
train=dict(
|
18 |
+
type='RepeatDataset',
|
19 |
+
dataset=dict(
|
20 |
+
type='TextMotionDataset',
|
21 |
+
dataset_name='human_ml3d',
|
22 |
+
data_prefix='data',
|
23 |
+
pipeline=train_pipeline,
|
24 |
+
ann_file='train.txt',
|
25 |
+
motion_dir='motions',
|
26 |
+
text_dir='texts',
|
27 |
+
token_dir='tokens',
|
28 |
+
clip_feat_dir='clip_feats',
|
29 |
+
),
|
30 |
+
times=200
|
31 |
+
),
|
32 |
+
test=dict(
|
33 |
+
type='TextMotionDataset',
|
34 |
+
dataset_name='human_ml3d',
|
35 |
+
data_prefix='data',
|
36 |
+
pipeline=train_pipeline,
|
37 |
+
ann_file='test.txt',
|
38 |
+
motion_dir='motions',
|
39 |
+
text_dir='texts',
|
40 |
+
token_dir='tokens',
|
41 |
+
clip_feat_dir='clip_feats',
|
42 |
+
eval_cfg=dict(
|
43 |
+
shuffle_indexes=True,
|
44 |
+
replication_times=20,
|
45 |
+
replication_reduction='statistics',
|
46 |
+
text_encoder_name='human_ml3d',
|
47 |
+
text_encoder_path='data/evaluators/human_ml3d/finest.tar',
|
48 |
+
motion_encoder_name='human_ml3d',
|
49 |
+
motion_encoder_path='data/evaluators/human_ml3d/finest.tar',
|
50 |
+
metrics=[
|
51 |
+
dict(type='R Precision', batch_size=32, top_k=3),
|
52 |
+
dict(type='Matching Score', batch_size=32),
|
53 |
+
dict(type='FID'),
|
54 |
+
dict(type='Diversity', num_samples=300),
|
55 |
+
dict(type='MultiModality', num_samples=100, num_repeats=30, num_picks=10)
|
56 |
+
]
|
57 |
+
),
|
58 |
+
test_mode=True
|
59 |
+
)
|
60 |
+
)
|
configs/_base_/datasets/kit_ml_bs128.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
data_keys = ['motion', 'motion_mask', 'motion_length', 'clip_feat']
|
3 |
+
meta_keys = ['text', 'token']
|
4 |
+
train_pipeline = [
|
5 |
+
dict(type='Crop', crop_size=196),
|
6 |
+
dict(
|
7 |
+
type='Normalize',
|
8 |
+
mean_path='data/datasets/kit_ml/mean.npy',
|
9 |
+
std_path='data/datasets/kit_ml/std.npy'),
|
10 |
+
dict(type='ToTensor', keys=data_keys),
|
11 |
+
dict(type='Collect', keys=data_keys, meta_keys=meta_keys)
|
12 |
+
]
|
13 |
+
|
14 |
+
data = dict(
|
15 |
+
samples_per_gpu=128,
|
16 |
+
workers_per_gpu=1,
|
17 |
+
train=dict(
|
18 |
+
type='RepeatDataset',
|
19 |
+
dataset=dict(
|
20 |
+
type='TextMotionDataset',
|
21 |
+
dataset_name='kit_ml',
|
22 |
+
data_prefix='data',
|
23 |
+
pipeline=train_pipeline,
|
24 |
+
ann_file='train.txt',
|
25 |
+
motion_dir='motions',
|
26 |
+
text_dir='texts',
|
27 |
+
token_dir='tokens',
|
28 |
+
clip_feat_dir='clip_feats',
|
29 |
+
),
|
30 |
+
times=100
|
31 |
+
),
|
32 |
+
test=dict(
|
33 |
+
type='TextMotionDataset',
|
34 |
+
dataset_name='kit_ml',
|
35 |
+
data_prefix='data',
|
36 |
+
pipeline=train_pipeline,
|
37 |
+
ann_file='test.txt',
|
38 |
+
motion_dir='motions',
|
39 |
+
text_dir='texts',
|
40 |
+
token_dir='tokens',
|
41 |
+
clip_feat_dir='clip_feats',
|
42 |
+
eval_cfg=dict(
|
43 |
+
shuffle_indexes=True,
|
44 |
+
replication_times=20,
|
45 |
+
replication_reduction='statistics',
|
46 |
+
text_encoder_name='kit_ml',
|
47 |
+
text_encoder_path='data/evaluators/kit_ml/finest.tar',
|
48 |
+
motion_encoder_name='kit_ml',
|
49 |
+
motion_encoder_path='data/evaluators/kit_ml/finest.tar',
|
50 |
+
metrics=[
|
51 |
+
dict(type='R Precision', batch_size=32, top_k=3),
|
52 |
+
dict(type='Matching Score', batch_size=32),
|
53 |
+
dict(type='FID'),
|
54 |
+
dict(type='Diversity', num_samples=300),
|
55 |
+
dict(type='MultiModality', num_samples=50, num_repeats=30, num_picks=10)
|
56 |
+
]
|
57 |
+
),
|
58 |
+
test_mode=True
|
59 |
+
)
|
60 |
+
)
|
configs/mdm/mdm_t2m_official.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_ = ['../_base_/datasets/human_ml3d_bs128.py']
|
2 |
+
|
3 |
+
# checkpoint saving
|
4 |
+
checkpoint_config = dict(interval=1)
|
5 |
+
|
6 |
+
dist_params = dict(backend='nccl')
|
7 |
+
log_level = 'INFO'
|
8 |
+
load_from = None
|
9 |
+
resume_from = None
|
10 |
+
workflow = [('train', 1)]
|
11 |
+
|
12 |
+
# optimizer
|
13 |
+
optimizer = dict(type='Adam', lr=1e-4)
|
14 |
+
optimizer_config = dict(grad_clip=None)
|
15 |
+
# learning policy
|
16 |
+
lr_config = dict(policy='step', step=[])
|
17 |
+
runner = dict(type='EpochBasedRunner', max_epochs=50)
|
18 |
+
|
19 |
+
log_config = dict(
|
20 |
+
interval=50,
|
21 |
+
hooks=[
|
22 |
+
dict(type='TextLoggerHook'),
|
23 |
+
# dict(type='TensorboardLoggerHook')
|
24 |
+
])
|
25 |
+
|
26 |
+
input_feats = 263
|
27 |
+
max_seq_len = 196
|
28 |
+
latent_dim = 512
|
29 |
+
time_embed_dim = 2048
|
30 |
+
text_latent_dim = 256
|
31 |
+
ff_size = 1024
|
32 |
+
num_layers = 8
|
33 |
+
num_heads = 4
|
34 |
+
dropout = 0.1
|
35 |
+
cond_mask_prob = 0.1
|
36 |
+
# model settings
|
37 |
+
model = dict(
|
38 |
+
type='MotionDiffusion',
|
39 |
+
model=dict(
|
40 |
+
type='MDMTransformer',
|
41 |
+
input_feats=input_feats,
|
42 |
+
latent_dim=latent_dim,
|
43 |
+
ff_size=ff_size,
|
44 |
+
num_layers=num_layers,
|
45 |
+
num_heads=num_heads,
|
46 |
+
dropout=dropout,
|
47 |
+
time_embed_dim=time_embed_dim,
|
48 |
+
cond_mask_prob=cond_mask_prob,
|
49 |
+
guide_scale=2.5,
|
50 |
+
clip_version='ViT-B/32',
|
51 |
+
use_official_ckpt=True
|
52 |
+
),
|
53 |
+
loss_recon=dict(type='MSELoss', loss_weight=1, reduction='none'),
|
54 |
+
diffusion_train=dict(
|
55 |
+
beta_scheduler='cosine',
|
56 |
+
diffusion_steps=1000,
|
57 |
+
model_mean_type='start_x',
|
58 |
+
model_var_type='fixed_small',
|
59 |
+
),
|
60 |
+
diffusion_test=dict(
|
61 |
+
beta_scheduler='cosine',
|
62 |
+
diffusion_steps=1000,
|
63 |
+
model_mean_type='start_x',
|
64 |
+
model_var_type='fixed_small',
|
65 |
+
),
|
66 |
+
inference_type='ddpm'
|
67 |
+
)
|
configs/motiondiffuse/motiondiffuse_kit.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_ = ['../_base_/datasets/kit_ml_bs128.py']
|
2 |
+
|
3 |
+
# checkpoint saving
|
4 |
+
checkpoint_config = dict(interval=1)
|
5 |
+
|
6 |
+
dist_params = dict(backend='nccl')
|
7 |
+
log_level = 'INFO'
|
8 |
+
load_from = None
|
9 |
+
resume_from = None
|
10 |
+
workflow = [('train', 1)]
|
11 |
+
|
12 |
+
# optimizer
|
13 |
+
optimizer = dict(type='Adam', lr=2e-4)
|
14 |
+
optimizer_config = dict(grad_clip=None)
|
15 |
+
# learning policy
|
16 |
+
lr_config = dict(policy='step', step=[])
|
17 |
+
runner = dict(type='EpochBasedRunner', max_epochs=50)
|
18 |
+
|
19 |
+
log_config = dict(
|
20 |
+
interval=50,
|
21 |
+
hooks=[
|
22 |
+
dict(type='TextLoggerHook'),
|
23 |
+
# dict(type='TensorboardLoggerHook')
|
24 |
+
])
|
25 |
+
|
26 |
+
input_feats = 251
|
27 |
+
max_seq_len = 196
|
28 |
+
latent_dim = 512
|
29 |
+
time_embed_dim = 2048
|
30 |
+
text_latent_dim = 256
|
31 |
+
ff_size = 1024
|
32 |
+
num_heads = 8
|
33 |
+
dropout = 0
|
34 |
+
# model settings
|
35 |
+
model = dict(
|
36 |
+
type='MotionDiffusion',
|
37 |
+
model=dict(
|
38 |
+
type='MotionDiffuseTransformer',
|
39 |
+
input_feats=input_feats,
|
40 |
+
max_seq_len=max_seq_len,
|
41 |
+
latent_dim=latent_dim,
|
42 |
+
time_embed_dim=time_embed_dim,
|
43 |
+
num_layers=8,
|
44 |
+
sa_block_cfg=dict(
|
45 |
+
type='EfficientSelfAttention',
|
46 |
+
latent_dim=latent_dim,
|
47 |
+
num_heads=num_heads,
|
48 |
+
dropout=dropout,
|
49 |
+
time_embed_dim=time_embed_dim
|
50 |
+
),
|
51 |
+
ca_block_cfg=dict(
|
52 |
+
type='EfficientCrossAttention',
|
53 |
+
latent_dim=latent_dim,
|
54 |
+
text_latent_dim=text_latent_dim,
|
55 |
+
num_heads=num_heads,
|
56 |
+
dropout=dropout,
|
57 |
+
time_embed_dim=time_embed_dim
|
58 |
+
),
|
59 |
+
ffn_cfg=dict(
|
60 |
+
latent_dim=latent_dim,
|
61 |
+
ffn_dim=ff_size,
|
62 |
+
dropout=dropout,
|
63 |
+
time_embed_dim=time_embed_dim
|
64 |
+
),
|
65 |
+
text_encoder=dict(
|
66 |
+
pretrained_model='clip',
|
67 |
+
latent_dim=text_latent_dim,
|
68 |
+
num_layers=4,
|
69 |
+
num_heads=4,
|
70 |
+
ff_size=2048,
|
71 |
+
dropout=dropout,
|
72 |
+
use_text_proj=True
|
73 |
+
)
|
74 |
+
),
|
75 |
+
loss_recon=dict(type='MSELoss', loss_weight=1, reduction='none'),
|
76 |
+
diffusion_train=dict(
|
77 |
+
beta_scheduler='linear',
|
78 |
+
diffusion_steps=1000,
|
79 |
+
model_mean_type='epsilon',
|
80 |
+
model_var_type='fixed_small',
|
81 |
+
),
|
82 |
+
diffusion_test=dict(
|
83 |
+
beta_scheduler='linear',
|
84 |
+
diffusion_steps=1000,
|
85 |
+
model_mean_type='epsilon',
|
86 |
+
model_var_type='fixed_small',
|
87 |
+
),
|
88 |
+
inference_type='ddpm'
|
89 |
+
)
|
configs/motiondiffuse/motiondiffuse_t2m.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_ = ['../_base_/datasets/human_ml3d_bs128.py']
|
2 |
+
|
3 |
+
# checkpoint saving
|
4 |
+
checkpoint_config = dict(interval=1)
|
5 |
+
|
6 |
+
dist_params = dict(backend='nccl')
|
7 |
+
log_level = 'INFO'
|
8 |
+
load_from = None
|
9 |
+
resume_from = None
|
10 |
+
workflow = [('train', 1)]
|
11 |
+
|
12 |
+
# optimizer
|
13 |
+
optimizer = dict(type='Adam', lr=2e-4)
|
14 |
+
optimizer_config = dict(grad_clip=None)
|
15 |
+
# learning policy
|
16 |
+
lr_config = dict(policy='step', step=[])
|
17 |
+
runner = dict(type='EpochBasedRunner', max_epochs=50)
|
18 |
+
|
19 |
+
log_config = dict(
|
20 |
+
interval=50,
|
21 |
+
hooks=[
|
22 |
+
dict(type='TextLoggerHook'),
|
23 |
+
# dict(type='TensorboardLoggerHook')
|
24 |
+
])
|
25 |
+
|
26 |
+
input_feats = 263
|
27 |
+
max_seq_len = 196
|
28 |
+
latent_dim = 512
|
29 |
+
time_embed_dim = 2048
|
30 |
+
text_latent_dim = 256
|
31 |
+
ff_size = 1024
|
32 |
+
num_heads = 8
|
33 |
+
dropout = 0
|
34 |
+
# model settings
|
35 |
+
model = dict(
|
36 |
+
type='MotionDiffusion',
|
37 |
+
model=dict(
|
38 |
+
type='MotionDiffuseTransformer',
|
39 |
+
input_feats=input_feats,
|
40 |
+
max_seq_len=max_seq_len,
|
41 |
+
latent_dim=latent_dim,
|
42 |
+
time_embed_dim=time_embed_dim,
|
43 |
+
num_layers=8,
|
44 |
+
sa_block_cfg=dict(
|
45 |
+
type='EfficientSelfAttention',
|
46 |
+
latent_dim=latent_dim,
|
47 |
+
num_heads=num_heads,
|
48 |
+
dropout=dropout,
|
49 |
+
time_embed_dim=time_embed_dim
|
50 |
+
),
|
51 |
+
ca_block_cfg=dict(
|
52 |
+
type='EfficientCrossAttention',
|
53 |
+
latent_dim=latent_dim,
|
54 |
+
text_latent_dim=text_latent_dim,
|
55 |
+
num_heads=num_heads,
|
56 |
+
dropout=dropout,
|
57 |
+
time_embed_dim=time_embed_dim
|
58 |
+
),
|
59 |
+
ffn_cfg=dict(
|
60 |
+
latent_dim=latent_dim,
|
61 |
+
ffn_dim=ff_size,
|
62 |
+
dropout=dropout,
|
63 |
+
time_embed_dim=time_embed_dim
|
64 |
+
),
|
65 |
+
text_encoder=dict(
|
66 |
+
pretrained_model='clip',
|
67 |
+
latent_dim=text_latent_dim,
|
68 |
+
num_layers=4,
|
69 |
+
num_heads=4,
|
70 |
+
ff_size=2048,
|
71 |
+
dropout=dropout,
|
72 |
+
use_text_proj=True
|
73 |
+
)
|
74 |
+
),
|
75 |
+
loss_recon=dict(type='MSELoss', loss_weight=1, reduction='none'),
|
76 |
+
diffusion_train=dict(
|
77 |
+
beta_scheduler='linear',
|
78 |
+
diffusion_steps=1000,
|
79 |
+
model_mean_type='epsilon',
|
80 |
+
model_var_type='fixed_small',
|
81 |
+
),
|
82 |
+
diffusion_test=dict(
|
83 |
+
beta_scheduler='linear',
|
84 |
+
diffusion_steps=1000,
|
85 |
+
model_mean_type='epsilon',
|
86 |
+
model_var_type='fixed_small',
|
87 |
+
),
|
88 |
+
inference_type='ddpm'
|
89 |
+
)
|
90 |
+
data = dict(samples_per_gpu=128)
|
configs/remodiffuse/remodiffuse_kit.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_ = ['../_base_/datasets/kit_ml_bs128.py']
|
2 |
+
|
3 |
+
# checkpoint saving
|
4 |
+
checkpoint_config = dict(interval=1)
|
5 |
+
|
6 |
+
dist_params = dict(backend='nccl')
|
7 |
+
log_level = 'INFO'
|
8 |
+
load_from = None
|
9 |
+
resume_from = None
|
10 |
+
workflow = [('train', 1)]
|
11 |
+
|
12 |
+
# optimizer
|
13 |
+
optimizer = dict(type='Adam', lr=2e-4)
|
14 |
+
optimizer_config = dict(grad_clip=None)
|
15 |
+
# learning policy
|
16 |
+
lr_config = dict(policy='CosineAnnealing', min_lr_ratio=2e-5, by_epoch=False)
|
17 |
+
runner = dict(type='EpochBasedRunner', max_epochs=20)
|
18 |
+
|
19 |
+
log_config = dict(
|
20 |
+
interval=50,
|
21 |
+
hooks=[
|
22 |
+
dict(type='TextLoggerHook'),
|
23 |
+
# dict(type='TensorboardLoggerHook')
|
24 |
+
])
|
25 |
+
|
26 |
+
input_feats = 251
|
27 |
+
max_seq_len = 196
|
28 |
+
latent_dim = 512
|
29 |
+
time_embed_dim = 2048
|
30 |
+
text_latent_dim = 256
|
31 |
+
ff_size = 1024
|
32 |
+
num_heads = 8
|
33 |
+
dropout = 0
|
34 |
+
|
35 |
+
def scale_func(timestep):
|
36 |
+
import random
|
37 |
+
w = (1 - (1000 - timestep) / 1000) * 4.0 + 1
|
38 |
+
if timestep > 100:
|
39 |
+
if random.randint(0, 1) == 0:
|
40 |
+
output = {
|
41 |
+
'both_coef': w,
|
42 |
+
'text_coef': 0,
|
43 |
+
'retr_coef': 1 - w,
|
44 |
+
'none_coef': 0
|
45 |
+
}
|
46 |
+
else:
|
47 |
+
output = {
|
48 |
+
'both_coef': 0,
|
49 |
+
'text_coef': w,
|
50 |
+
'retr_coef': 0,
|
51 |
+
'none_coef': 1 - w
|
52 |
+
}
|
53 |
+
else:
|
54 |
+
both_coef = 0.78123
|
55 |
+
text_coef = 0.39284
|
56 |
+
retr_coef = -0.12475
|
57 |
+
none_coef = 1 - both_coef - text_coef - retr_coef
|
58 |
+
output = {
|
59 |
+
'both_coef': both_coef,
|
60 |
+
'text_coef': text_coef,
|
61 |
+
'retr_coef': retr_coef,
|
62 |
+
'none_coef': none_coef
|
63 |
+
}
|
64 |
+
return output
|
65 |
+
|
66 |
+
# model settings
|
67 |
+
model = dict(
|
68 |
+
type='MotionDiffusion',
|
69 |
+
model=dict(
|
70 |
+
type='ReMoDiffuseTransformer',
|
71 |
+
input_feats=input_feats,
|
72 |
+
max_seq_len=max_seq_len,
|
73 |
+
latent_dim=latent_dim,
|
74 |
+
time_embed_dim=time_embed_dim,
|
75 |
+
num_layers=4,
|
76 |
+
ca_block_cfg=dict(
|
77 |
+
type='SemanticsModulatedAttention',
|
78 |
+
latent_dim=latent_dim,
|
79 |
+
text_latent_dim=text_latent_dim,
|
80 |
+
num_heads=num_heads,
|
81 |
+
dropout=dropout,
|
82 |
+
time_embed_dim=time_embed_dim
|
83 |
+
),
|
84 |
+
ffn_cfg=dict(
|
85 |
+
latent_dim=latent_dim,
|
86 |
+
ffn_dim=ff_size,
|
87 |
+
dropout=dropout,
|
88 |
+
time_embed_dim=time_embed_dim
|
89 |
+
),
|
90 |
+
text_encoder=dict(
|
91 |
+
pretrained_model='clip',
|
92 |
+
latent_dim=text_latent_dim,
|
93 |
+
num_layers=2,
|
94 |
+
ff_size=2048,
|
95 |
+
dropout=dropout,
|
96 |
+
use_text_proj=False
|
97 |
+
),
|
98 |
+
retrieval_cfg=dict(
|
99 |
+
num_retrieval=2,
|
100 |
+
stride=4,
|
101 |
+
num_layers=2,
|
102 |
+
num_motion_layers=2,
|
103 |
+
kinematic_coef=0.1,
|
104 |
+
topk=2,
|
105 |
+
retrieval_file='data/database/kit_text_train.npz',
|
106 |
+
latent_dim=latent_dim,
|
107 |
+
output_dim=latent_dim,
|
108 |
+
max_seq_len=max_seq_len,
|
109 |
+
num_heads=num_heads,
|
110 |
+
ff_size=ff_size,
|
111 |
+
dropout=dropout,
|
112 |
+
ffn_cfg=dict(
|
113 |
+
latent_dim=latent_dim,
|
114 |
+
ffn_dim=ff_size,
|
115 |
+
dropout=dropout,
|
116 |
+
),
|
117 |
+
sa_block_cfg=dict(
|
118 |
+
type='EfficientSelfAttention',
|
119 |
+
latent_dim=latent_dim,
|
120 |
+
num_heads=num_heads,
|
121 |
+
dropout=dropout
|
122 |
+
),
|
123 |
+
),
|
124 |
+
scale_func=scale_func
|
125 |
+
),
|
126 |
+
loss_recon=dict(type='MSELoss', loss_weight=1, reduction='none'),
|
127 |
+
diffusion_train=dict(
|
128 |
+
beta_scheduler='linear',
|
129 |
+
diffusion_steps=1000,
|
130 |
+
model_mean_type='start_x',
|
131 |
+
model_var_type='fixed_large',
|
132 |
+
),
|
133 |
+
diffusion_test=dict(
|
134 |
+
beta_scheduler='linear',
|
135 |
+
diffusion_steps=1000,
|
136 |
+
model_mean_type='start_x',
|
137 |
+
model_var_type='fixed_large',
|
138 |
+
respace='15,15,8,6,6',
|
139 |
+
),
|
140 |
+
inference_type='ddim'
|
141 |
+
)
|
configs/remodiffuse/remodiffuse_t2m.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_ = ['../_base_/datasets/human_ml3d_bs128.py']
|
2 |
+
|
3 |
+
# checkpoint saving
|
4 |
+
checkpoint_config = dict(interval=1)
|
5 |
+
|
6 |
+
dist_params = dict(backend='nccl')
|
7 |
+
log_level = 'INFO'
|
8 |
+
load_from = None
|
9 |
+
resume_from = None
|
10 |
+
workflow = [('train', 1)]
|
11 |
+
|
12 |
+
# optimizer
|
13 |
+
optimizer = dict(type='Adam', lr=2e-4)
|
14 |
+
optimizer_config = dict(grad_clip=None)
|
15 |
+
# learning policy
|
16 |
+
lr_config = dict(policy='CosineAnnealing', min_lr_ratio=2e-5, by_epoch=False)
|
17 |
+
runner = dict(type='EpochBasedRunner', max_epochs=40)
|
18 |
+
|
19 |
+
log_config = dict(
|
20 |
+
interval=50,
|
21 |
+
hooks=[
|
22 |
+
dict(type='TextLoggerHook'),
|
23 |
+
# dict(type='TensorboardLoggerHook')
|
24 |
+
])
|
25 |
+
|
26 |
+
input_feats = 263
|
27 |
+
max_seq_len = 196
|
28 |
+
latent_dim = 512
|
29 |
+
time_embed_dim = 2048
|
30 |
+
text_latent_dim = 256
|
31 |
+
ff_size = 1024
|
32 |
+
num_heads = 8
|
33 |
+
dropout = 0
|
34 |
+
|
35 |
+
def scale_func(timestep):
|
36 |
+
import random
|
37 |
+
w = (1 - (1000 - timestep) / 1000) * 6.5 + 1
|
38 |
+
if timestep > 100:
|
39 |
+
if random.randint(0, 1) == 0:
|
40 |
+
output = {
|
41 |
+
'both_coef': w,
|
42 |
+
'text_coef': 0,
|
43 |
+
'retr_coef': 1 - w,
|
44 |
+
'none_coef': 0
|
45 |
+
}
|
46 |
+
else:
|
47 |
+
output = {
|
48 |
+
'both_coef': 0,
|
49 |
+
'text_coef': w,
|
50 |
+
'retr_coef': 0,
|
51 |
+
'none_coef': 1 - w
|
52 |
+
}
|
53 |
+
else:
|
54 |
+
both_coef = 0.52351
|
55 |
+
text_coef = -0.28419
|
56 |
+
retr_coef = 2.39872
|
57 |
+
none_coef = 1 - both_coef - text_coef - retr_coef
|
58 |
+
output = {
|
59 |
+
'both_coef': both_coef,
|
60 |
+
'text_coef': text_coef,
|
61 |
+
'retr_coef': retr_coef,
|
62 |
+
'none_coef': none_coef
|
63 |
+
}
|
64 |
+
return output
|
65 |
+
|
66 |
+
# model settings
|
67 |
+
model = dict(
|
68 |
+
type='MotionDiffusion',
|
69 |
+
model=dict(
|
70 |
+
type='ReMoDiffuseTransformer',
|
71 |
+
input_feats=input_feats,
|
72 |
+
max_seq_len=max_seq_len,
|
73 |
+
latent_dim=latent_dim,
|
74 |
+
time_embed_dim=time_embed_dim,
|
75 |
+
num_layers=4,
|
76 |
+
ca_block_cfg=dict(
|
77 |
+
type='SemanticsModulatedAttention',
|
78 |
+
latent_dim=latent_dim,
|
79 |
+
text_latent_dim=text_latent_dim,
|
80 |
+
num_heads=num_heads,
|
81 |
+
dropout=dropout,
|
82 |
+
time_embed_dim=time_embed_dim
|
83 |
+
),
|
84 |
+
ffn_cfg=dict(
|
85 |
+
latent_dim=latent_dim,
|
86 |
+
ffn_dim=ff_size,
|
87 |
+
dropout=dropout,
|
88 |
+
time_embed_dim=time_embed_dim
|
89 |
+
),
|
90 |
+
text_encoder=dict(
|
91 |
+
pretrained_model='clip',
|
92 |
+
latent_dim=text_latent_dim,
|
93 |
+
num_layers=2,
|
94 |
+
ff_size=2048,
|
95 |
+
dropout=dropout,
|
96 |
+
use_text_proj=False
|
97 |
+
),
|
98 |
+
retrieval_cfg=dict(
|
99 |
+
num_retrieval=2,
|
100 |
+
stride=4,
|
101 |
+
num_layers=2,
|
102 |
+
num_motion_layers=2,
|
103 |
+
kinematic_coef=0.1,
|
104 |
+
topk=2,
|
105 |
+
retrieval_file='data/database/t2m_text_train.npz',
|
106 |
+
latent_dim=latent_dim,
|
107 |
+
output_dim=latent_dim,
|
108 |
+
max_seq_len=max_seq_len,
|
109 |
+
num_heads=num_heads,
|
110 |
+
ff_size=ff_size,
|
111 |
+
dropout=dropout,
|
112 |
+
ffn_cfg=dict(
|
113 |
+
latent_dim=latent_dim,
|
114 |
+
ffn_dim=ff_size,
|
115 |
+
dropout=dropout,
|
116 |
+
),
|
117 |
+
sa_block_cfg=dict(
|
118 |
+
type='EfficientSelfAttention',
|
119 |
+
latent_dim=latent_dim,
|
120 |
+
num_heads=num_heads,
|
121 |
+
dropout=dropout
|
122 |
+
),
|
123 |
+
),
|
124 |
+
scale_func=scale_func
|
125 |
+
),
|
126 |
+
loss_recon=dict(type='MSELoss', loss_weight=1, reduction='none'),
|
127 |
+
diffusion_train=dict(
|
128 |
+
beta_scheduler='linear',
|
129 |
+
diffusion_steps=1000,
|
130 |
+
model_mean_type='start_x',
|
131 |
+
model_var_type='fixed_large',
|
132 |
+
),
|
133 |
+
diffusion_test=dict(
|
134 |
+
beta_scheduler='linear',
|
135 |
+
diffusion_steps=1000,
|
136 |
+
model_mean_type='start_x',
|
137 |
+
model_var_type='fixed_large',
|
138 |
+
respace='15,15,8,6,6',
|
139 |
+
),
|
140 |
+
inference_type='ddim'
|
141 |
+
)
|
data/database/t2m_text_train.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae3575b686e29623f9e1715345b052726650f53c5bfcc770d9fb87a827a60249
|
3 |
+
size 1462801786
|
data/datasets/human_ml3d/mean.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d73483a5b53e017b4044fe363164d7c185082a02ae7f69525ea70c5ccfd4a85
|
3 |
+
size 1180
|
data/datasets/human_ml3d/std.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a6d720e004b6da18e8033d739de6078cbc7c1c8fad0ff62eee86f173e4430a2
|
3 |
+
size 1180
|
data/datasets/kit_ml/mean.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e23fac51db2215ab5666324226be48f27efd6a6e7b22ebd17c28e0f056a7c22
|
3 |
+
size 2136
|
data/datasets/kit_ml/std.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:296a60656cea07e65ee64512d73d47c0412df0698b35194116330661be32fa90
|
3 |
+
size 2136
|
logs/mdm/mdm_t2m/latest.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8810255fb8df9eed6211537de9826f07ff73862f367cbf91532d84fd4c9a497e
|
3 |
+
size 81791550
|
logs/motiondiffuse/motiondiffuse_t2m/latest.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:521baa6ba60865710bc75b99f393b133e45dc18083229a2258a16e5dc65f904a
|
3 |
+
size 348728194
|
logs/remodiffuse/remodiffuse_t2m/latest.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aaa34b3328942769478e96283678424c95c4b817ca6f7162c4cf1fc512d4951b
|
3 |
+
size 187939375
|
mogen/__init__.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
|
3 |
+
import mmcv
|
4 |
+
from packaging.version import parse
|
5 |
+
|
6 |
+
from .version import __version__
|
7 |
+
|
8 |
+
|
9 |
+
def digit_version(version_str: str, length: int = 4):
|
10 |
+
"""Convert a version string into a tuple of integers.
|
11 |
+
This method is usually used for comparing two versions. For pre-release
|
12 |
+
versions: alpha < beta < rc.
|
13 |
+
Args:
|
14 |
+
version_str (str): The version string.
|
15 |
+
length (int): The maximum number of version levels. Default: 4.
|
16 |
+
Returns:
|
17 |
+
tuple[int]: The version info in digits (integers).
|
18 |
+
"""
|
19 |
+
version = parse(version_str)
|
20 |
+
assert version.release, f'failed to parse version {version_str}'
|
21 |
+
release = list(version.release)
|
22 |
+
release = release[:length]
|
23 |
+
if len(release) < length:
|
24 |
+
release = release + [0] * (length - len(release))
|
25 |
+
if version.is_prerelease:
|
26 |
+
mapping = {'a': -3, 'b': -2, 'rc': -1}
|
27 |
+
val = -4
|
28 |
+
# version.pre can be None
|
29 |
+
if version.pre:
|
30 |
+
if version.pre[0] not in mapping:
|
31 |
+
warnings.warn(f'unknown prerelease version {version.pre[0]}, '
|
32 |
+
'version checking may go wrong')
|
33 |
+
else:
|
34 |
+
val = mapping[version.pre[0]]
|
35 |
+
release.extend([val, version.pre[-1]])
|
36 |
+
else:
|
37 |
+
release.extend([val, 0])
|
38 |
+
|
39 |
+
elif version.is_postrelease:
|
40 |
+
release.extend([1, version.post])
|
41 |
+
else:
|
42 |
+
release.extend([0, 0])
|
43 |
+
return tuple(release)
|
44 |
+
|
45 |
+
|
46 |
+
mmcv_minimum_version = '1.4.2'
|
47 |
+
mmcv_maximum_version = '1.9.0'
|
48 |
+
mmcv_version = digit_version(mmcv.__version__)
|
49 |
+
|
50 |
+
|
51 |
+
assert (mmcv_version >= digit_version(mmcv_minimum_version)
|
52 |
+
and mmcv_version <= digit_version(mmcv_maximum_version)), \
|
53 |
+
f'MMCV=={mmcv.__version__} is used but incompatible. ' \
|
54 |
+
f'Please install mmcv>={mmcv_minimum_version}, <={mmcv_maximum_version}.'
|
55 |
+
|
56 |
+
__all__ = ['__version__', 'digit_version']
|
mogen/apis/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from mogen.apis import test, train
|
2 |
+
from mogen.apis.test import (
|
3 |
+
collect_results_cpu,
|
4 |
+
collect_results_gpu,
|
5 |
+
multi_gpu_test,
|
6 |
+
single_gpu_test,
|
7 |
+
)
|
8 |
+
from mogen.apis.train import set_random_seed, train_model
|
9 |
+
|
10 |
+
__all__ = [
|
11 |
+
'collect_results_cpu', 'collect_results_gpu', 'multi_gpu_test',
|
12 |
+
'single_gpu_test', 'set_random_seed', 'train_model'
|
13 |
+
]
|
mogen/apis/test.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os.path as osp
|
2 |
+
import pickle
|
3 |
+
import shutil
|
4 |
+
import tempfile
|
5 |
+
import time
|
6 |
+
|
7 |
+
import mmcv
|
8 |
+
import torch
|
9 |
+
import torch.distributed as dist
|
10 |
+
from mmcv.runner import get_dist_info
|
11 |
+
|
12 |
+
|
13 |
+
def single_gpu_test(model, data_loader):
|
14 |
+
"""Test with single gpu."""
|
15 |
+
model.eval()
|
16 |
+
results = []
|
17 |
+
dataset = data_loader.dataset
|
18 |
+
prog_bar = mmcv.ProgressBar(len(dataset))
|
19 |
+
for i, data in enumerate(data_loader):
|
20 |
+
with torch.no_grad():
|
21 |
+
result = model(return_loss=False, **data)
|
22 |
+
|
23 |
+
batch_size = len(result)
|
24 |
+
if isinstance(result, list):
|
25 |
+
results.extend(result)
|
26 |
+
else:
|
27 |
+
results.append(result)
|
28 |
+
|
29 |
+
batch_size = data['motion'].size(0)
|
30 |
+
for _ in range(batch_size):
|
31 |
+
prog_bar.update()
|
32 |
+
return results
|
33 |
+
|
34 |
+
|
35 |
+
def multi_gpu_test(model, data_loader, tmpdir=None, gpu_collect=False):
|
36 |
+
"""Test model with multiple gpus.
|
37 |
+
This method tests model with multiple gpus and collects the results
|
38 |
+
under two different modes: gpu and cpu modes. By setting 'gpu_collect=True'
|
39 |
+
it encodes results to gpu tensors and use gpu communication for results
|
40 |
+
collection. On cpu mode it saves the results on different gpus to 'tmpdir'
|
41 |
+
and collects them by the rank 0 worker.
|
42 |
+
Args:
|
43 |
+
model (nn.Module): Model to be tested.
|
44 |
+
data_loader (nn.Dataloader): Pytorch data loader.
|
45 |
+
tmpdir (str): Path of directory to save the temporary results from
|
46 |
+
different gpus under cpu mode.
|
47 |
+
gpu_collect (bool): Option to use either gpu or cpu to collect results.
|
48 |
+
Returns:
|
49 |
+
list: The prediction results.
|
50 |
+
"""
|
51 |
+
model.eval()
|
52 |
+
results = []
|
53 |
+
dataset = data_loader.dataset
|
54 |
+
rank, world_size = get_dist_info()
|
55 |
+
if rank == 0:
|
56 |
+
# Check if tmpdir is valid for cpu_collect
|
57 |
+
if (not gpu_collect) and (tmpdir is not None and osp.exists(tmpdir)):
|
58 |
+
raise OSError((f'The tmpdir {tmpdir} already exists.',
|
59 |
+
' Since tmpdir will be deleted after testing,',
|
60 |
+
' please make sure you specify an empty one.'))
|
61 |
+
prog_bar = mmcv.ProgressBar(len(dataset))
|
62 |
+
time.sleep(2) # This line can prevent deadlock problem in some cases.
|
63 |
+
for i, data in enumerate(data_loader):
|
64 |
+
with torch.no_grad():
|
65 |
+
result = model(return_loss=False, **data)
|
66 |
+
if isinstance(result, list):
|
67 |
+
results.extend(result)
|
68 |
+
else:
|
69 |
+
results.append(result)
|
70 |
+
|
71 |
+
if rank == 0:
|
72 |
+
batch_size = data['motion'].size(0)
|
73 |
+
for _ in range(batch_size * world_size):
|
74 |
+
prog_bar.update()
|
75 |
+
|
76 |
+
# collect results from all ranks
|
77 |
+
if gpu_collect:
|
78 |
+
results = collect_results_gpu(results, len(dataset))
|
79 |
+
else:
|
80 |
+
results = collect_results_cpu(results, len(dataset), tmpdir)
|
81 |
+
return results
|
82 |
+
|
83 |
+
|
84 |
+
def collect_results_cpu(result_part, size, tmpdir=None):
|
85 |
+
"""Collect results in cpu."""
|
86 |
+
rank, world_size = get_dist_info()
|
87 |
+
# create a tmp dir if it is not specified
|
88 |
+
if tmpdir is None:
|
89 |
+
MAX_LEN = 512
|
90 |
+
# 32 is whitespace
|
91 |
+
dir_tensor = torch.full((MAX_LEN, ),
|
92 |
+
32,
|
93 |
+
dtype=torch.uint8,
|
94 |
+
device='cuda')
|
95 |
+
if rank == 0:
|
96 |
+
mmcv.mkdir_or_exist('.dist_test')
|
97 |
+
tmpdir = tempfile.mkdtemp(dir='.dist_test')
|
98 |
+
tmpdir = torch.tensor(
|
99 |
+
bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda')
|
100 |
+
dir_tensor[:len(tmpdir)] = tmpdir
|
101 |
+
dist.broadcast(dir_tensor, 0)
|
102 |
+
tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip()
|
103 |
+
else:
|
104 |
+
mmcv.mkdir_or_exist(tmpdir)
|
105 |
+
# dump the part result to the dir
|
106 |
+
mmcv.dump(result_part, osp.join(tmpdir, f'part_{rank}.pkl'))
|
107 |
+
dist.barrier()
|
108 |
+
# collect all parts
|
109 |
+
if rank != 0:
|
110 |
+
return None
|
111 |
+
else:
|
112 |
+
# load results of all parts from tmp dir
|
113 |
+
part_list = []
|
114 |
+
for i in range(world_size):
|
115 |
+
part_file = osp.join(tmpdir, f'part_{i}.pkl')
|
116 |
+
part_result = mmcv.load(part_file)
|
117 |
+
part_list.append(part_result)
|
118 |
+
# sort the results
|
119 |
+
ordered_results = []
|
120 |
+
for res in zip(*part_list):
|
121 |
+
ordered_results.extend(list(res))
|
122 |
+
# the dataloader may pad some samples
|
123 |
+
ordered_results = ordered_results[:size]
|
124 |
+
# remove tmp dir
|
125 |
+
shutil.rmtree(tmpdir)
|
126 |
+
return ordered_results
|
127 |
+
|
128 |
+
|
129 |
+
def collect_results_gpu(result_part, size):
|
130 |
+
"""Collect results in gpu."""
|
131 |
+
rank, world_size = get_dist_info()
|
132 |
+
# dump result part to tensor with pickle
|
133 |
+
part_tensor = torch.tensor(
|
134 |
+
bytearray(pickle.dumps(result_part)), dtype=torch.uint8, device='cuda')
|
135 |
+
# gather all result part tensor shape
|
136 |
+
shape_tensor = torch.tensor(part_tensor.shape, device='cuda')
|
137 |
+
shape_list = [shape_tensor.clone() for _ in range(world_size)]
|
138 |
+
dist.all_gather(shape_list, shape_tensor)
|
139 |
+
# padding result part tensor to max length
|
140 |
+
shape_max = torch.tensor(shape_list).max()
|
141 |
+
part_send = torch.zeros(shape_max, dtype=torch.uint8, device='cuda')
|
142 |
+
part_send[:shape_tensor[0]] = part_tensor
|
143 |
+
part_recv_list = [
|
144 |
+
part_tensor.new_zeros(shape_max) for _ in range(world_size)
|
145 |
+
]
|
146 |
+
# gather all result part
|
147 |
+
dist.all_gather(part_recv_list, part_send)
|
148 |
+
|
149 |
+
if rank == 0:
|
150 |
+
part_list = []
|
151 |
+
for recv, shape in zip(part_recv_list, shape_list):
|
152 |
+
part_result = pickle.loads(recv[:shape[0]].cpu().numpy().tobytes())
|
153 |
+
part_list.append(part_result)
|
154 |
+
# sort the results
|
155 |
+
ordered_results = []
|
156 |
+
for res in zip(*part_list):
|
157 |
+
ordered_results.extend(list(res))
|
158 |
+
# the dataloader may pad some samples
|
159 |
+
ordered_results = ordered_results[:size]
|
160 |
+
return ordered_results
|
mogen/apis/train.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import warnings
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
|
7 |
+
from mmcv.runner import (
|
8 |
+
DistSamplerSeedHook,
|
9 |
+
Fp16OptimizerHook,
|
10 |
+
OptimizerHook,
|
11 |
+
build_runner,
|
12 |
+
)
|
13 |
+
|
14 |
+
from mogen.core.distributed_wrapper import DistributedDataParallelWrapper
|
15 |
+
from mogen.core.evaluation import DistEvalHook, EvalHook
|
16 |
+
from mogen.core.optimizer import build_optimizers
|
17 |
+
from mogen.datasets import build_dataloader, build_dataset
|
18 |
+
from mogen.utils import get_root_logger
|
19 |
+
|
20 |
+
|
21 |
+
def set_random_seed(seed, deterministic=False):
|
22 |
+
"""Set random seed.
|
23 |
+
Args:
|
24 |
+
seed (int): Seed to be used.
|
25 |
+
deterministic (bool): Whether to set the deterministic option for
|
26 |
+
CUDNN backend, i.e., set `torch.backends.cudnn.deterministic`
|
27 |
+
to True and `torch.backends.cudnn.benchmark` to False.
|
28 |
+
Default: False.
|
29 |
+
"""
|
30 |
+
random.seed(seed)
|
31 |
+
np.random.seed(seed)
|
32 |
+
torch.manual_seed(seed)
|
33 |
+
torch.cuda.manual_seed_all(seed)
|
34 |
+
if deterministic:
|
35 |
+
torch.backends.cudnn.deterministic = True
|
36 |
+
torch.backends.cudnn.benchmark = False
|
37 |
+
|
38 |
+
|
39 |
+
def train_model(model,
|
40 |
+
dataset,
|
41 |
+
cfg,
|
42 |
+
distributed=False,
|
43 |
+
validate=False,
|
44 |
+
timestamp=None,
|
45 |
+
device='cuda',
|
46 |
+
meta=None):
|
47 |
+
"""Main api for training model."""
|
48 |
+
logger = get_root_logger(cfg.log_level)
|
49 |
+
|
50 |
+
# prepare data loaders
|
51 |
+
dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]
|
52 |
+
|
53 |
+
data_loaders = [
|
54 |
+
build_dataloader(
|
55 |
+
ds,
|
56 |
+
cfg.data.samples_per_gpu,
|
57 |
+
cfg.data.workers_per_gpu,
|
58 |
+
# cfg.gpus will be ignored if distributed
|
59 |
+
num_gpus=len(cfg.gpu_ids),
|
60 |
+
dist=distributed,
|
61 |
+
round_up=True,
|
62 |
+
seed=cfg.seed) for ds in dataset
|
63 |
+
]
|
64 |
+
|
65 |
+
# determine whether use adversarial training precess or not
|
66 |
+
use_adverserial_train = cfg.get('use_adversarial_train', False)
|
67 |
+
|
68 |
+
# put model on gpus
|
69 |
+
if distributed:
|
70 |
+
find_unused_parameters = cfg.get('find_unused_parameters', True)
|
71 |
+
# Sets the `find_unused_parameters` parameter in
|
72 |
+
# torch.nn.parallel.DistributedDataParallel
|
73 |
+
if use_adverserial_train:
|
74 |
+
# Use DistributedDataParallelWrapper for adversarial training
|
75 |
+
model = DistributedDataParallelWrapper(
|
76 |
+
model,
|
77 |
+
device_ids=[torch.cuda.current_device()],
|
78 |
+
broadcast_buffers=False,
|
79 |
+
find_unused_parameters=find_unused_parameters)
|
80 |
+
else:
|
81 |
+
model = MMDistributedDataParallel(
|
82 |
+
model.cuda(),
|
83 |
+
device_ids=[torch.cuda.current_device()],
|
84 |
+
broadcast_buffers=False,
|
85 |
+
find_unused_parameters=find_unused_parameters)
|
86 |
+
else:
|
87 |
+
if device == 'cuda':
|
88 |
+
model = MMDataParallel(
|
89 |
+
model.cuda(cfg.gpu_ids[0]), device_ids=cfg.gpu_ids)
|
90 |
+
elif device == 'cpu':
|
91 |
+
model = model.cpu()
|
92 |
+
else:
|
93 |
+
raise ValueError(F'unsupported device name {device}.')
|
94 |
+
|
95 |
+
# build runner
|
96 |
+
optimizer = build_optimizers(model, cfg.optimizer)
|
97 |
+
|
98 |
+
if cfg.get('runner') is None:
|
99 |
+
cfg.runner = {
|
100 |
+
'type': 'EpochBasedRunner',
|
101 |
+
'max_epochs': cfg.total_epochs
|
102 |
+
}
|
103 |
+
warnings.warn(
|
104 |
+
'config is now expected to have a `runner` section, '
|
105 |
+
'please set `runner` in your config.', UserWarning)
|
106 |
+
|
107 |
+
runner = build_runner(
|
108 |
+
cfg.runner,
|
109 |
+
default_args=dict(
|
110 |
+
model=model,
|
111 |
+
batch_processor=None,
|
112 |
+
optimizer=optimizer,
|
113 |
+
work_dir=cfg.work_dir,
|
114 |
+
logger=logger,
|
115 |
+
meta=meta))
|
116 |
+
|
117 |
+
# an ugly walkaround to make the .log and .log.json filenames the same
|
118 |
+
runner.timestamp = timestamp
|
119 |
+
|
120 |
+
if use_adverserial_train:
|
121 |
+
# The optimizer step process is included in the train_step function
|
122 |
+
# of the model, so the runner should NOT include optimizer hook.
|
123 |
+
optimizer_config = None
|
124 |
+
else:
|
125 |
+
# fp16 setting
|
126 |
+
fp16_cfg = cfg.get('fp16', None)
|
127 |
+
if fp16_cfg is not None:
|
128 |
+
optimizer_config = Fp16OptimizerHook(
|
129 |
+
**cfg.optimizer_config, **fp16_cfg, distributed=distributed)
|
130 |
+
elif distributed and 'type' not in cfg.optimizer_config:
|
131 |
+
optimizer_config = OptimizerHook(**cfg.optimizer_config)
|
132 |
+
else:
|
133 |
+
optimizer_config = cfg.optimizer_config
|
134 |
+
|
135 |
+
# register hooks
|
136 |
+
runner.register_training_hooks(
|
137 |
+
cfg.lr_config,
|
138 |
+
optimizer_config,
|
139 |
+
cfg.checkpoint_config,
|
140 |
+
cfg.log_config,
|
141 |
+
cfg.get('momentum_config', None),
|
142 |
+
custom_hooks_config=cfg.get('custom_hooks', None))
|
143 |
+
if distributed:
|
144 |
+
runner.register_hook(DistSamplerSeedHook())
|
145 |
+
|
146 |
+
# register eval hooks
|
147 |
+
if validate:
|
148 |
+
val_dataset = build_dataset(cfg.data.val, dict(test_mode=True))
|
149 |
+
val_dataloader = build_dataloader(
|
150 |
+
val_dataset,
|
151 |
+
samples_per_gpu=cfg.data.samples_per_gpu,
|
152 |
+
workers_per_gpu=cfg.data.workers_per_gpu,
|
153 |
+
dist=distributed,
|
154 |
+
shuffle=False,
|
155 |
+
round_up=True)
|
156 |
+
eval_cfg = cfg.get('evaluation', {})
|
157 |
+
eval_cfg['by_epoch'] = cfg.runner['type'] != 'IterBasedRunner'
|
158 |
+
eval_hook = DistEvalHook if distributed else EvalHook
|
159 |
+
runner.register_hook(eval_hook(val_dataloader, **eval_cfg))
|
160 |
+
|
161 |
+
if cfg.resume_from:
|
162 |
+
runner.resume(cfg.resume_from)
|
163 |
+
elif cfg.load_from:
|
164 |
+
runner.load_checkpoint(cfg.load_from)
|
165 |
+
runner.run(data_loaders, cfg.workflow)
|
mogen/core/__init__.py
ADDED
File without changes
|
mogen/core/distributed_wrapper.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from mmcv.parallel import MODULE_WRAPPERS, MMDistributedDataParallel
|
5 |
+
from mmcv.parallel.scatter_gather import scatter_kwargs
|
6 |
+
from torch.cuda._utils import _get_device_index
|
7 |
+
|
8 |
+
|
9 |
+
@MODULE_WRAPPERS.register_module()
|
10 |
+
class DistributedDataParallelWrapper(nn.Module):
|
11 |
+
"""A DistributedDataParallel wrapper for models in 3D mesh estimation task.
|
12 |
+
|
13 |
+
In 3D mesh estimation task, there is a need to wrap different modules in
|
14 |
+
the models with separate DistributedDataParallel. Otherwise, it will cause
|
15 |
+
errors for GAN training.
|
16 |
+
More specific, the GAN model, usually has two sub-modules:
|
17 |
+
generator and discriminator. If we wrap both of them in one
|
18 |
+
standard DistributedDataParallel, it will cause errors during training,
|
19 |
+
because when we update the parameters of the generator (or discriminator),
|
20 |
+
the parameters of the discriminator (or generator) is not updated, which is
|
21 |
+
not allowed for DistributedDataParallel.
|
22 |
+
So we design this wrapper to separately wrap DistributedDataParallel
|
23 |
+
for generator and discriminator.
|
24 |
+
In this wrapper, we perform two operations:
|
25 |
+
1. Wrap the modules in the models with separate MMDistributedDataParallel.
|
26 |
+
Note that only modules with parameters will be wrapped.
|
27 |
+
2. Do scatter operation for 'forward', 'train_step' and 'val_step'.
|
28 |
+
Note that the arguments of this wrapper is the same as those in
|
29 |
+
`torch.nn.parallel.distributed.DistributedDataParallel`.
|
30 |
+
Args:
|
31 |
+
module (nn.Module): Module that needs to be wrapped.
|
32 |
+
device_ids (list[int | `torch.device`]): Same as that in
|
33 |
+
`torch.nn.parallel.distributed.DistributedDataParallel`.
|
34 |
+
dim (int, optional): Same as that in the official scatter function in
|
35 |
+
pytorch. Defaults to 0.
|
36 |
+
broadcast_buffers (bool): Same as that in
|
37 |
+
`torch.nn.parallel.distributed.DistributedDataParallel`.
|
38 |
+
Defaults to False.
|
39 |
+
find_unused_parameters (bool, optional): Same as that in
|
40 |
+
`torch.nn.parallel.distributed.DistributedDataParallel`.
|
41 |
+
Traverse the autograd graph of all tensors contained in returned
|
42 |
+
value of the wrapped module’s forward function. Defaults to False.
|
43 |
+
kwargs (dict): Other arguments used in
|
44 |
+
`torch.nn.parallel.distributed.DistributedDataParallel`.
|
45 |
+
"""
|
46 |
+
|
47 |
+
def __init__(self,
|
48 |
+
module,
|
49 |
+
device_ids,
|
50 |
+
dim=0,
|
51 |
+
broadcast_buffers=False,
|
52 |
+
find_unused_parameters=False,
|
53 |
+
**kwargs):
|
54 |
+
super().__init__()
|
55 |
+
assert len(device_ids) == 1, (
|
56 |
+
'Currently, DistributedDataParallelWrapper only supports one'
|
57 |
+
'single CUDA device for each process.'
|
58 |
+
f'The length of device_ids must be 1, but got {len(device_ids)}.')
|
59 |
+
self.module = module
|
60 |
+
self.dim = dim
|
61 |
+
self.to_ddp(
|
62 |
+
device_ids=device_ids,
|
63 |
+
dim=dim,
|
64 |
+
broadcast_buffers=broadcast_buffers,
|
65 |
+
find_unused_parameters=find_unused_parameters,
|
66 |
+
**kwargs)
|
67 |
+
self.output_device = _get_device_index(device_ids[0], True)
|
68 |
+
|
69 |
+
def to_ddp(self, device_ids, dim, broadcast_buffers,
|
70 |
+
find_unused_parameters, **kwargs):
|
71 |
+
"""Wrap models with separate MMDistributedDataParallel.
|
72 |
+
|
73 |
+
It only wraps the modules with parameters.
|
74 |
+
"""
|
75 |
+
for name, module in self.module._modules.items():
|
76 |
+
if next(module.parameters(), None) is None:
|
77 |
+
module = module.cuda()
|
78 |
+
elif all(not p.requires_grad for p in module.parameters()):
|
79 |
+
module = module.cuda()
|
80 |
+
else:
|
81 |
+
module = MMDistributedDataParallel(
|
82 |
+
module.cuda(),
|
83 |
+
device_ids=device_ids,
|
84 |
+
dim=dim,
|
85 |
+
broadcast_buffers=broadcast_buffers,
|
86 |
+
find_unused_parameters=find_unused_parameters,
|
87 |
+
**kwargs)
|
88 |
+
self.module._modules[name] = module
|
89 |
+
|
90 |
+
def scatter(self, inputs, kwargs, device_ids):
|
91 |
+
"""Scatter function.
|
92 |
+
|
93 |
+
Args:
|
94 |
+
inputs (Tensor): Input Tensor.
|
95 |
+
kwargs (dict): Args for
|
96 |
+
``mmcv.parallel.scatter_gather.scatter_kwargs``.
|
97 |
+
device_ids (int): Device id.
|
98 |
+
"""
|
99 |
+
return scatter_kwargs(inputs, kwargs, device_ids, dim=self.dim)
|
100 |
+
|
101 |
+
def forward(self, *inputs, **kwargs):
|
102 |
+
"""Forward function.
|
103 |
+
|
104 |
+
Args:
|
105 |
+
inputs (tuple): Input data.
|
106 |
+
kwargs (dict): Args for
|
107 |
+
``mmcv.parallel.scatter_gather.scatter_kwargs``.
|
108 |
+
"""
|
109 |
+
inputs, kwargs = self.scatter(inputs, kwargs,
|
110 |
+
[torch.cuda.current_device()])
|
111 |
+
return self.module(*inputs[0], **kwargs[0])
|
112 |
+
|
113 |
+
def train_step(self, *inputs, **kwargs):
|
114 |
+
"""Train step function.
|
115 |
+
|
116 |
+
Args:
|
117 |
+
inputs (Tensor): Input Tensor.
|
118 |
+
kwargs (dict): Args for
|
119 |
+
``mmcv.parallel.scatter_gather.scatter_kwargs``.
|
120 |
+
"""
|
121 |
+
inputs, kwargs = self.scatter(inputs, kwargs,
|
122 |
+
[torch.cuda.current_device()])
|
123 |
+
output = self.module.train_step(*inputs[0], **kwargs[0])
|
124 |
+
return output
|
125 |
+
|
126 |
+
def val_step(self, *inputs, **kwargs):
|
127 |
+
"""Validation step function.
|
128 |
+
|
129 |
+
Args:
|
130 |
+
inputs (tuple): Input data.
|
131 |
+
kwargs (dict): Args for ``scatter_kwargs``.
|
132 |
+
"""
|
133 |
+
inputs, kwargs = self.scatter(inputs, kwargs,
|
134 |
+
[torch.cuda.current_device()])
|
135 |
+
output = self.module.val_step(*inputs[0], **kwargs[0])
|
136 |
+
return output
|
mogen/core/evaluation/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from mogen.core.evaluation.eval_hooks import DistEvalHook, EvalHook
|
2 |
+
from mogen.core.evaluation.builder import build_evaluator
|
3 |
+
|
4 |
+
__all__ = ["DistEvalHook", "EvalHook", "build_evaluator"]
|
mogen/core/evaluation/builder.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import numpy as np
|
3 |
+
from mmcv.utils import Registry
|
4 |
+
from .evaluators.precision_evaluator import PrecisionEvaluator
|
5 |
+
from .evaluators.matching_score_evaluator import MatchingScoreEvaluator
|
6 |
+
from .evaluators.fid_evaluator import FIDEvaluator
|
7 |
+
from .evaluators.diversity_evaluator import DiversityEvaluator
|
8 |
+
from .evaluators.multimodality_evaluator import MultiModalityEvaluator
|
9 |
+
|
10 |
+
EVALUATORS = Registry('evaluators')
|
11 |
+
|
12 |
+
EVALUATORS.register_module(name='R Precision', module=PrecisionEvaluator)
|
13 |
+
EVALUATORS.register_module(name='Matching Score', module=MatchingScoreEvaluator)
|
14 |
+
EVALUATORS.register_module(name='FID', module=FIDEvaluator)
|
15 |
+
EVALUATORS.register_module(name='Diversity', module=DiversityEvaluator)
|
16 |
+
EVALUATORS.register_module(name='MultiModality', module=MultiModalityEvaluator)
|
17 |
+
|
18 |
+
|
19 |
+
def build_evaluator(metric, eval_cfg, data_len, eval_indexes):
|
20 |
+
cfg = copy.deepcopy(eval_cfg)
|
21 |
+
cfg.update(metric)
|
22 |
+
cfg.pop('metrics')
|
23 |
+
cfg['data_len'] = data_len
|
24 |
+
cfg['eval_indexes'] = eval_indexes
|
25 |
+
evaluator = EVALUATORS.build(cfg)
|
26 |
+
if evaluator.append_indexes is not None:
|
27 |
+
for i in range(eval_cfg['replication_times']):
|
28 |
+
eval_indexes[i] = np.concatenate((eval_indexes[i], evaluator.append_indexes[i]), axis=0)
|
29 |
+
return evaluator, eval_indexes
|
mogen/core/evaluation/eval_hooks.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import tempfile
|
3 |
+
import warnings
|
4 |
+
|
5 |
+
from mmcv.runner import DistEvalHook as BaseDistEvalHook
|
6 |
+
from mmcv.runner import EvalHook as BaseEvalHook
|
7 |
+
|
8 |
+
mogen_GREATER_KEYS = []
|
9 |
+
mogen_LESS_KEYS = []
|
10 |
+
|
11 |
+
|
12 |
+
class EvalHook(BaseEvalHook):
|
13 |
+
|
14 |
+
def __init__(self,
|
15 |
+
dataloader,
|
16 |
+
start=None,
|
17 |
+
interval=1,
|
18 |
+
by_epoch=True,
|
19 |
+
save_best=None,
|
20 |
+
rule=None,
|
21 |
+
test_fn=None,
|
22 |
+
greater_keys=mogen_GREATER_KEYS,
|
23 |
+
less_keys=mogen_LESS_KEYS,
|
24 |
+
**eval_kwargs):
|
25 |
+
if test_fn is None:
|
26 |
+
from mogen.apis import single_gpu_test
|
27 |
+
test_fn = single_gpu_test
|
28 |
+
|
29 |
+
# remove "gpu_collect" from eval_kwargs
|
30 |
+
if 'gpu_collect' in eval_kwargs:
|
31 |
+
warnings.warn(
|
32 |
+
'"gpu_collect" will be deprecated in EvalHook.'
|
33 |
+
'Please remove it from the config.', DeprecationWarning)
|
34 |
+
_ = eval_kwargs.pop('gpu_collect')
|
35 |
+
|
36 |
+
# update "save_best" according to "key_indicator" and remove the
|
37 |
+
# latter from eval_kwargs
|
38 |
+
if 'key_indicator' in eval_kwargs or isinstance(save_best, bool):
|
39 |
+
warnings.warn(
|
40 |
+
'"key_indicator" will be deprecated in EvalHook.'
|
41 |
+
'Please use "save_best" to specify the metric key,'
|
42 |
+
'e.g., save_best="pa-mpjpe".', DeprecationWarning)
|
43 |
+
|
44 |
+
key_indicator = eval_kwargs.pop('key_indicator', None)
|
45 |
+
if save_best is True and key_indicator is None:
|
46 |
+
raise ValueError('key_indicator should not be None, when '
|
47 |
+
'save_best is set to True.')
|
48 |
+
save_best = key_indicator
|
49 |
+
|
50 |
+
super().__init__(dataloader, start, interval, by_epoch, save_best,
|
51 |
+
rule, test_fn, greater_keys, less_keys, **eval_kwargs)
|
52 |
+
|
53 |
+
def evaluate(self, runner, results):
|
54 |
+
|
55 |
+
with tempfile.TemporaryDirectory() as tmp_dir:
|
56 |
+
eval_res = self.dataloader.dataset.evaluate(
|
57 |
+
results,
|
58 |
+
work_dir=tmp_dir,
|
59 |
+
logger=runner.logger,
|
60 |
+
**self.eval_kwargs)
|
61 |
+
|
62 |
+
for name, val in eval_res.items():
|
63 |
+
runner.log_buffer.output[name] = val
|
64 |
+
runner.log_buffer.ready = True
|
65 |
+
|
66 |
+
if self.save_best is not None:
|
67 |
+
if self.key_indicator == 'auto':
|
68 |
+
self._init_rule(self.rule, list(eval_res.keys())[0])
|
69 |
+
|
70 |
+
return eval_res[self.key_indicator]
|
71 |
+
|
72 |
+
return None
|
73 |
+
|
74 |
+
|
75 |
+
class DistEvalHook(BaseDistEvalHook):
|
76 |
+
|
77 |
+
def __init__(self,
|
78 |
+
dataloader,
|
79 |
+
start=None,
|
80 |
+
interval=1,
|
81 |
+
by_epoch=True,
|
82 |
+
save_best=None,
|
83 |
+
rule=None,
|
84 |
+
test_fn=None,
|
85 |
+
greater_keys=mogen_GREATER_KEYS,
|
86 |
+
less_keys=mogen_LESS_KEYS,
|
87 |
+
broadcast_bn_buffer=True,
|
88 |
+
tmpdir=None,
|
89 |
+
gpu_collect=False,
|
90 |
+
**eval_kwargs):
|
91 |
+
|
92 |
+
if test_fn is None:
|
93 |
+
from mogen.apis import multi_gpu_test
|
94 |
+
test_fn = multi_gpu_test
|
95 |
+
|
96 |
+
# update "save_best" according to "key_indicator" and remove the
|
97 |
+
# latter from eval_kwargs
|
98 |
+
if 'key_indicator' in eval_kwargs or isinstance(save_best, bool):
|
99 |
+
warnings.warn(
|
100 |
+
'"key_indicator" will be deprecated in EvalHook.'
|
101 |
+
'Please use "save_best" to specify the metric key,'
|
102 |
+
'e.g., save_best="pa-mpjpe".', DeprecationWarning)
|
103 |
+
|
104 |
+
key_indicator = eval_kwargs.pop('key_indicator', None)
|
105 |
+
if save_best is True and key_indicator is None:
|
106 |
+
raise ValueError('key_indicator should not be None, when '
|
107 |
+
'save_best is set to True.')
|
108 |
+
save_best = key_indicator
|
109 |
+
|
110 |
+
super().__init__(dataloader, start, interval, by_epoch, save_best,
|
111 |
+
rule, test_fn, greater_keys, less_keys,
|
112 |
+
broadcast_bn_buffer, tmpdir, gpu_collect,
|
113 |
+
**eval_kwargs)
|
114 |
+
|
115 |
+
def evaluate(self, runner, results):
|
116 |
+
"""Evaluate the results.
|
117 |
+
Args:
|
118 |
+
runner (:obj:`mmcv.Runner`): The underlined training runner.
|
119 |
+
results (list): Output results.
|
120 |
+
"""
|
121 |
+
with tempfile.TemporaryDirectory() as tmp_dir:
|
122 |
+
eval_res = self.dataloader.dataset.evaluate(
|
123 |
+
results,
|
124 |
+
work_dir=tmp_dir,
|
125 |
+
logger=runner.logger,
|
126 |
+
**self.eval_kwargs)
|
127 |
+
|
128 |
+
for name, val in eval_res.items():
|
129 |
+
runner.log_buffer.output[name] = val
|
130 |
+
runner.log_buffer.ready = True
|
131 |
+
|
132 |
+
if self.save_best is not None:
|
133 |
+
if self.key_indicator == 'auto':
|
134 |
+
# infer from eval_results
|
135 |
+
self._init_rule(self.rule, list(eval_res.keys())[0])
|
136 |
+
return eval_res[self.key_indicator]
|
137 |
+
|
138 |
+
return None
|
mogen/core/evaluation/evaluators/__init__.py
ADDED
File without changes
|
mogen/core/evaluation/evaluators/base_evaluator.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from ..utils import get_metric_statistics
|
4 |
+
|
5 |
+
|
6 |
+
class BaseEvaluator(object):
|
7 |
+
|
8 |
+
def __init__(self,
|
9 |
+
batch_size=None,
|
10 |
+
drop_last=False,
|
11 |
+
replication_times=1,
|
12 |
+
replication_reduction='statistics',
|
13 |
+
eval_begin_idx=None,
|
14 |
+
eval_end_idx=None):
|
15 |
+
self.batch_size = batch_size
|
16 |
+
self.drop_last = drop_last
|
17 |
+
self.replication_times = replication_times
|
18 |
+
self.replication_reduction = replication_reduction
|
19 |
+
assert replication_reduction in ['statistics', 'mean', 'concat']
|
20 |
+
self.eval_begin_idx = eval_begin_idx
|
21 |
+
self.eval_end_idx = eval_end_idx
|
22 |
+
|
23 |
+
def evaluate(self, results):
|
24 |
+
total_len = len(results)
|
25 |
+
partial_len = total_len // self.replication_times
|
26 |
+
all_metrics = []
|
27 |
+
for replication_idx in range(self.replication_times):
|
28 |
+
partial_results = results[
|
29 |
+
replication_idx * partial_len: (replication_idx + 1) * partial_len]
|
30 |
+
if self.batch_size is not None:
|
31 |
+
batch_metrics = []
|
32 |
+
for batch_start in range(self.eval_begin_idx, self.eval_end_idx, self.batch_size):
|
33 |
+
batch_results = partial_results[batch_start: batch_start + self.batch_size]
|
34 |
+
if len(batch_results) < self.batch_size and self.drop_last:
|
35 |
+
continue
|
36 |
+
batch_metrics.append(self.single_evaluate(batch_results))
|
37 |
+
all_metrics.append(self.concat_batch_metrics(batch_metrics))
|
38 |
+
else:
|
39 |
+
batch_results = partial_results[self.eval_begin_idx: self.eval_end_idx]
|
40 |
+
all_metrics.append(self.single_evaluate(batch_results))
|
41 |
+
all_metrics = np.stack(all_metrics, axis=0)
|
42 |
+
if self.replication_reduction == 'statistics':
|
43 |
+
values = get_metric_statistics(all_metrics, self.replication_times)
|
44 |
+
elif self.replication_reduction == 'mean':
|
45 |
+
values = np.mean(all_metrics, axis=0)
|
46 |
+
elif self.replication_reduction == 'concat':
|
47 |
+
values = all_metrics
|
48 |
+
return self.parse_values(values)
|
49 |
+
|
50 |
+
def prepare_results(self, results):
|
51 |
+
text = []
|
52 |
+
pred_motion = []
|
53 |
+
pred_motion_length = []
|
54 |
+
pred_motion_mask = []
|
55 |
+
motion = []
|
56 |
+
motion_length = []
|
57 |
+
motion_mask = []
|
58 |
+
token = []
|
59 |
+
# count the maximum motion length
|
60 |
+
T = max([result['motion'].shape[0] for result in results])
|
61 |
+
for result in results:
|
62 |
+
cur_motion = result['motion']
|
63 |
+
if cur_motion.shape[0] < T:
|
64 |
+
padding_values = torch.zeros((T - cur_motion.shape[0], cur_motion.shape[1]))
|
65 |
+
padding_values = padding_values.type_as(pred_motion)
|
66 |
+
cur_motion = torch.cat([cur_motion, padding_values], dim=0)
|
67 |
+
motion.append(cur_motion)
|
68 |
+
cur_pred_motion = result['pred_motion']
|
69 |
+
if cur_pred_motion.shape[0] < T:
|
70 |
+
padding_values = torch.zeros((T - cur_pred_motion.shape[0], cur_pred_motion.shape[1]))
|
71 |
+
padding_values = padding_values.type_as(cur_pred_motion)
|
72 |
+
cur_pred_motion = torch.cat([cur_pred_motion, padding_values], dim=0)
|
73 |
+
pred_motion.append(cur_pred_motion)
|
74 |
+
cur_motion_mask = result['motion_mask']
|
75 |
+
if cur_motion_mask.shape[0] < T:
|
76 |
+
padding_values = torch.zeros((T - cur_motion_mask.shape[0]))
|
77 |
+
padding_values = padding_values.type_as(cur_motion_mask)
|
78 |
+
cur_motion_mask= torch.cat([cur_motion_mask, padding_values], dim=0)
|
79 |
+
motion_mask.append(cur_motion_mask)
|
80 |
+
cur_pred_motion_mask = result['pred_motion_mask']
|
81 |
+
if cur_pred_motion_mask.shape[0] < T:
|
82 |
+
padding_values = torch.zeros((T - cur_pred_motion_mask.shape[0]))
|
83 |
+
padding_values = padding_values.type_as(cur_pred_motion_mask)
|
84 |
+
cur_pred_motion_mask= torch.cat([cur_pred_motion_mask, padding_values], dim=0)
|
85 |
+
pred_motion_mask.append(cur_pred_motion_mask)
|
86 |
+
motion_length.append(result['motion_length'].item())
|
87 |
+
pred_motion_length.append(result['pred_motion_length'].item())
|
88 |
+
if 'text' in result.keys():
|
89 |
+
text.append(result['text'])
|
90 |
+
if 'token' in result.keys():
|
91 |
+
token.append(result['token'])
|
92 |
+
|
93 |
+
motion = torch.stack(motion, dim=0)
|
94 |
+
pred_motion = torch.stack(pred_motion, dim=0)
|
95 |
+
motion_mask = torch.stack(motion_mask, dim=0)
|
96 |
+
pred_motion_mask = torch.stack(pred_motion_mask, dim=0)
|
97 |
+
motion_length = torch.Tensor(motion_length).to(motion.device).long()
|
98 |
+
pred_motion_length = torch.Tensor(pred_motion_length).to(motion.device).long()
|
99 |
+
output = {
|
100 |
+
'pred_motion': pred_motion,
|
101 |
+
'pred_motion_mask': pred_motion_mask,
|
102 |
+
'pred_motion_length': pred_motion_length,
|
103 |
+
'motion': motion,
|
104 |
+
'motion_mask': motion_mask,
|
105 |
+
'motion_length': motion_length,
|
106 |
+
'text': text,
|
107 |
+
'token': token
|
108 |
+
}
|
109 |
+
return output
|
110 |
+
|
111 |
+
def to_device(self, device):
|
112 |
+
for model in self.model_list:
|
113 |
+
model.to(device)
|
114 |
+
|
115 |
+
def motion_encode(self, motion, motion_length, motion_mask, device):
|
116 |
+
N = motion.shape[0]
|
117 |
+
motion_emb = []
|
118 |
+
batch_size = 32
|
119 |
+
cur_idx = 0
|
120 |
+
with torch.no_grad():
|
121 |
+
while cur_idx < N:
|
122 |
+
cur_motion = motion[cur_idx: cur_idx + batch_size].to(device)
|
123 |
+
cur_motion_length = motion_length[cur_idx: cur_idx + batch_size].to(device)
|
124 |
+
cur_motion_mask = motion_mask[cur_idx: cur_idx + batch_size].to(device)
|
125 |
+
cur_motion_emb = self.motion_encoder(cur_motion, cur_motion_length, cur_motion_mask)
|
126 |
+
motion_emb.append(cur_motion_emb)
|
127 |
+
cur_idx += batch_size
|
128 |
+
motion_emb = torch.cat(motion_emb, dim=0)
|
129 |
+
return motion_emb
|
130 |
+
|
131 |
+
def text_encode(self, text, token, device):
|
132 |
+
N = len(text)
|
133 |
+
text_emb = []
|
134 |
+
batch_size = 32
|
135 |
+
cur_idx = 0
|
136 |
+
with torch.no_grad():
|
137 |
+
while cur_idx < N:
|
138 |
+
cur_text = text[cur_idx: cur_idx + batch_size]
|
139 |
+
cur_token = token[cur_idx: cur_idx + batch_size]
|
140 |
+
cur_text_emb = self.text_encoder(cur_text, cur_token, device)
|
141 |
+
text_emb.append(cur_text_emb)
|
142 |
+
cur_idx += batch_size
|
143 |
+
text_emb = torch.cat(text_emb, dim=0)
|
144 |
+
return text_emb
|
mogen/core/evaluation/evaluators/diversity_evaluator.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from ..get_model import get_motion_model
|
5 |
+
from .base_evaluator import BaseEvaluator
|
6 |
+
from ..utils import calculate_diversity
|
7 |
+
|
8 |
+
|
9 |
+
class DiversityEvaluator(BaseEvaluator):
|
10 |
+
|
11 |
+
def __init__(self,
|
12 |
+
data_len=0,
|
13 |
+
motion_encoder_name=None,
|
14 |
+
motion_encoder_path=None,
|
15 |
+
num_samples=300,
|
16 |
+
batch_size=None,
|
17 |
+
drop_last=False,
|
18 |
+
replication_times=1,
|
19 |
+
replication_reduction='statistics',
|
20 |
+
**kwargs):
|
21 |
+
super().__init__(
|
22 |
+
replication_times=replication_times,
|
23 |
+
replication_reduction=replication_reduction,
|
24 |
+
batch_size=batch_size,
|
25 |
+
drop_last=drop_last,
|
26 |
+
eval_begin_idx=0,
|
27 |
+
eval_end_idx=data_len
|
28 |
+
)
|
29 |
+
self.num_samples = num_samples
|
30 |
+
self.append_indexes = None
|
31 |
+
self.motion_encoder = get_motion_model(motion_encoder_name, motion_encoder_path)
|
32 |
+
self.model_list = [self.motion_encoder]
|
33 |
+
|
34 |
+
def single_evaluate(self, results):
|
35 |
+
results = self.prepare_results(results)
|
36 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
37 |
+
motion = results['motion']
|
38 |
+
pred_motion = results['pred_motion']
|
39 |
+
pred_motion_length = results['pred_motion_length']
|
40 |
+
pred_motion_mask = results['pred_motion_mask']
|
41 |
+
self.motion_encoder.to(device)
|
42 |
+
self.motion_encoder.eval()
|
43 |
+
with torch.no_grad():
|
44 |
+
pred_motion_emb = self.motion_encode(pred_motion, pred_motion_length, pred_motion_mask, device).cpu().detach().numpy()
|
45 |
+
diversity = calculate_diversity(pred_motion_emb, self.num_samples)
|
46 |
+
return diversity
|
47 |
+
|
48 |
+
def parse_values(self, values):
|
49 |
+
metrics = {}
|
50 |
+
metrics['Diversity (mean)'] = values[0]
|
51 |
+
metrics['Diversity (conf)'] = values[1]
|
52 |
+
return metrics
|
mogen/core/evaluation/evaluators/fid_evaluator.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from ..get_model import get_motion_model
|
5 |
+
from .base_evaluator import BaseEvaluator
|
6 |
+
from ..utils import (
|
7 |
+
calculate_activation_statistics,
|
8 |
+
calculate_frechet_distance)
|
9 |
+
|
10 |
+
|
11 |
+
class FIDEvaluator(BaseEvaluator):
|
12 |
+
|
13 |
+
def __init__(self,
|
14 |
+
data_len=0,
|
15 |
+
motion_encoder_name=None,
|
16 |
+
motion_encoder_path=None,
|
17 |
+
batch_size=None,
|
18 |
+
drop_last=False,
|
19 |
+
replication_times=1,
|
20 |
+
replication_reduction='statistics',
|
21 |
+
**kwargs):
|
22 |
+
super().__init__(
|
23 |
+
replication_times=replication_times,
|
24 |
+
replication_reduction=replication_reduction,
|
25 |
+
batch_size=batch_size,
|
26 |
+
drop_last=drop_last,
|
27 |
+
eval_begin_idx=0,
|
28 |
+
eval_end_idx=data_len
|
29 |
+
)
|
30 |
+
self.append_indexes = None
|
31 |
+
self.motion_encoder = get_motion_model(motion_encoder_name, motion_encoder_path)
|
32 |
+
self.model_list = [self.motion_encoder]
|
33 |
+
|
34 |
+
def single_evaluate(self, results):
|
35 |
+
results = self.prepare_results(results)
|
36 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
37 |
+
pred_motion = results['pred_motion']
|
38 |
+
|
39 |
+
pred_motion_length = results['pred_motion_length']
|
40 |
+
pred_motion_mask = results['pred_motion_mask']
|
41 |
+
motion = results['motion']
|
42 |
+
motion_length = results['motion_length']
|
43 |
+
motion_mask = results['motion_mask']
|
44 |
+
self.motion_encoder.to(device)
|
45 |
+
self.motion_encoder.eval()
|
46 |
+
with torch.no_grad():
|
47 |
+
pred_motion_emb = self.motion_encode(pred_motion, pred_motion_length, pred_motion_mask, device).cpu().detach().numpy()
|
48 |
+
gt_motion_emb = self.motion_encode(motion, motion_length, motion_mask, device).cpu().detach().numpy()
|
49 |
+
gt_mu, gt_cov = calculate_activation_statistics(gt_motion_emb)
|
50 |
+
pred_mu, pred_cov = calculate_activation_statistics(pred_motion_emb)
|
51 |
+
fid = calculate_frechet_distance(gt_mu, gt_cov, pred_mu, pred_cov)
|
52 |
+
return fid
|
53 |
+
|
54 |
+
def parse_values(self, values):
|
55 |
+
metrics = {}
|
56 |
+
metrics['FID (mean)'] = values[0]
|
57 |
+
metrics['FID (conf)'] = values[1]
|
58 |
+
return metrics
|
mogen/core/evaluation/evaluators/matching_score_evaluator.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from ..get_model import get_motion_model, get_text_model
|
5 |
+
from .base_evaluator import BaseEvaluator
|
6 |
+
from ..utils import calculate_top_k, euclidean_distance_matrix
|
7 |
+
|
8 |
+
|
9 |
+
class MatchingScoreEvaluator(BaseEvaluator):
|
10 |
+
|
11 |
+
def __init__(self,
|
12 |
+
data_len=0,
|
13 |
+
text_encoder_name=None,
|
14 |
+
text_encoder_path=None,
|
15 |
+
motion_encoder_name=None,
|
16 |
+
motion_encoder_path=None,
|
17 |
+
top_k=3,
|
18 |
+
batch_size=32,
|
19 |
+
drop_last=False,
|
20 |
+
replication_times=1,
|
21 |
+
replication_reduction='statistics',
|
22 |
+
**kwargs):
|
23 |
+
super().__init__(
|
24 |
+
replication_times=replication_times,
|
25 |
+
replication_reduction=replication_reduction,
|
26 |
+
batch_size=batch_size,
|
27 |
+
drop_last=drop_last,
|
28 |
+
eval_begin_idx=0,
|
29 |
+
eval_end_idx=data_len
|
30 |
+
)
|
31 |
+
self.append_indexes = None
|
32 |
+
self.text_encoder = get_text_model(text_encoder_name, text_encoder_path)
|
33 |
+
self.motion_encoder = get_motion_model(motion_encoder_name, motion_encoder_path)
|
34 |
+
self.top_k = top_k
|
35 |
+
self.model_list = [self.text_encoder, self.motion_encoder]
|
36 |
+
|
37 |
+
def single_evaluate(self, results):
|
38 |
+
results = self.prepare_results(results)
|
39 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
40 |
+
motion = results['motion']
|
41 |
+
pred_motion = results['pred_motion']
|
42 |
+
pred_motion_length = results['pred_motion_length']
|
43 |
+
pred_motion_mask = results['pred_motion_mask']
|
44 |
+
text = results['text']
|
45 |
+
token = results['token']
|
46 |
+
self.text_encoder.to(device)
|
47 |
+
self.motion_encoder.to(device)
|
48 |
+
self.text_encoder.eval()
|
49 |
+
self.motion_encoder.eval()
|
50 |
+
with torch.no_grad():
|
51 |
+
word_emb = self.text_encode(text, token, device=device).cpu().detach().numpy()
|
52 |
+
motion_emb = self.motion_encode(pred_motion, pred_motion_length, pred_motion_mask, device).cpu().detach().numpy()
|
53 |
+
dist_mat = euclidean_distance_matrix(word_emb, motion_emb)
|
54 |
+
matching_score = dist_mat.trace()
|
55 |
+
all_size = word_emb.shape[0]
|
56 |
+
return matching_score, all_size
|
57 |
+
|
58 |
+
def concat_batch_metrics(self, batch_metrics):
|
59 |
+
matching_score_sum = 0
|
60 |
+
all_size = 0
|
61 |
+
for batch_matching_score, batch_all_size in batch_metrics:
|
62 |
+
matching_score_sum += batch_matching_score
|
63 |
+
all_size += batch_all_size
|
64 |
+
matching_score = matching_score_sum / all_size
|
65 |
+
return matching_score
|
66 |
+
|
67 |
+
def parse_values(self, values):
|
68 |
+
metrics = {}
|
69 |
+
metrics['Matching Score (mean)'] = values[0]
|
70 |
+
metrics['Matching Score (conf)'] = values[1]
|
71 |
+
return metrics
|
mogen/core/evaluation/evaluators/multimodality_evaluator.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from ..get_model import get_motion_model
|
5 |
+
from .base_evaluator import BaseEvaluator
|
6 |
+
from ..utils import calculate_multimodality
|
7 |
+
|
8 |
+
|
9 |
+
class MultiModalityEvaluator(BaseEvaluator):
|
10 |
+
|
11 |
+
def __init__(self,
|
12 |
+
data_len=0,
|
13 |
+
motion_encoder_name=None,
|
14 |
+
motion_encoder_path=None,
|
15 |
+
num_samples=100,
|
16 |
+
num_repeats=30,
|
17 |
+
num_picks=10,
|
18 |
+
batch_size=None,
|
19 |
+
drop_last=False,
|
20 |
+
replication_times=1,
|
21 |
+
replication_reduction='statistics',
|
22 |
+
**kwargs):
|
23 |
+
super().__init__(
|
24 |
+
replication_times=replication_times,
|
25 |
+
replication_reduction=replication_reduction,
|
26 |
+
batch_size=batch_size,
|
27 |
+
drop_last=drop_last,
|
28 |
+
eval_begin_idx=data_len,
|
29 |
+
eval_end_idx=data_len + num_samples * num_repeats
|
30 |
+
)
|
31 |
+
self.num_samples = num_samples
|
32 |
+
self.num_repeats = num_repeats
|
33 |
+
self.num_picks = num_picks
|
34 |
+
self.append_indexes = []
|
35 |
+
for i in range(replication_times):
|
36 |
+
append_indexes = []
|
37 |
+
selected_indexs = np.random.choice(data_len, self.num_samples)
|
38 |
+
for index in selected_indexs:
|
39 |
+
append_indexes = append_indexes + [index] * self.num_repeats
|
40 |
+
self.append_indexes.append(np.array(append_indexes))
|
41 |
+
self.motion_encoder = get_motion_model(motion_encoder_name, motion_encoder_path)
|
42 |
+
self.model_list = [self.motion_encoder]
|
43 |
+
|
44 |
+
def single_evaluate(self, results):
|
45 |
+
results = self.prepare_results(results)
|
46 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
47 |
+
motion = results['motion']
|
48 |
+
pred_motion = results['pred_motion']
|
49 |
+
pred_motion_length = results['pred_motion_length']
|
50 |
+
pred_motion_mask = results['pred_motion_mask']
|
51 |
+
self.motion_encoder.to(device)
|
52 |
+
self.motion_encoder.eval()
|
53 |
+
with torch.no_grad():
|
54 |
+
pred_motion_emb = self.motion_encode(pred_motion, pred_motion_length, pred_motion_mask, device).cpu().detach().numpy()
|
55 |
+
pred_motion_emb = pred_motion_emb.reshape((self.num_samples, self.num_repeats, -1))
|
56 |
+
multimodality = calculate_multimodality(pred_motion_emb, self.num_picks)
|
57 |
+
return multimodality
|
58 |
+
|
59 |
+
def parse_values(self, values):
|
60 |
+
metrics = {}
|
61 |
+
metrics['MultiModality (mean)'] = values[0]
|
62 |
+
metrics['MultiModality (conf)'] = values[1]
|
63 |
+
return metrics
|
mogen/core/evaluation/evaluators/precision_evaluator.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from ..get_model import get_motion_model, get_text_model
|
5 |
+
from .base_evaluator import BaseEvaluator
|
6 |
+
from ..utils import calculate_top_k, euclidean_distance_matrix
|
7 |
+
|
8 |
+
|
9 |
+
class PrecisionEvaluator(BaseEvaluator):
|
10 |
+
|
11 |
+
def __init__(self,
|
12 |
+
data_len=0,
|
13 |
+
text_encoder_name=None,
|
14 |
+
text_encoder_path=None,
|
15 |
+
motion_encoder_name=None,
|
16 |
+
motion_encoder_path=None,
|
17 |
+
top_k=3,
|
18 |
+
batch_size=32,
|
19 |
+
drop_last=False,
|
20 |
+
replication_times=1,
|
21 |
+
replication_reduction='statistics',
|
22 |
+
**kwargs):
|
23 |
+
super().__init__(
|
24 |
+
replication_times=replication_times,
|
25 |
+
replication_reduction=replication_reduction,
|
26 |
+
batch_size=batch_size,
|
27 |
+
drop_last=drop_last,
|
28 |
+
eval_begin_idx=0,
|
29 |
+
eval_end_idx=data_len
|
30 |
+
)
|
31 |
+
self.append_indexes = None
|
32 |
+
self.text_encoder = get_text_model(text_encoder_name, text_encoder_path)
|
33 |
+
self.motion_encoder = get_motion_model(motion_encoder_name, motion_encoder_path)
|
34 |
+
self.top_k = top_k
|
35 |
+
self.model_list = [self.text_encoder, self.motion_encoder]
|
36 |
+
|
37 |
+
def single_evaluate(self, results):
|
38 |
+
results = self.prepare_results(results)
|
39 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
40 |
+
motion = results['motion']
|
41 |
+
pred_motion = results['pred_motion']
|
42 |
+
pred_motion_length = results['pred_motion_length']
|
43 |
+
pred_motion_mask = results['pred_motion_mask']
|
44 |
+
text = results['text']
|
45 |
+
token = results['token']
|
46 |
+
self.text_encoder.to(device)
|
47 |
+
self.motion_encoder.to(device)
|
48 |
+
self.text_encoder.eval()
|
49 |
+
self.motion_encoder.eval()
|
50 |
+
with torch.no_grad():
|
51 |
+
word_emb = self.text_encode(text, token, device=device).cpu().detach().numpy()
|
52 |
+
motion_emb = self.motion_encode(pred_motion, pred_motion_length, pred_motion_mask, device).cpu().detach().numpy()
|
53 |
+
dist_mat = euclidean_distance_matrix(word_emb, motion_emb)
|
54 |
+
argsmax = np.argsort(dist_mat, axis=1)
|
55 |
+
top_k_mat = calculate_top_k(argsmax, top_k=self.top_k)
|
56 |
+
top_k_count = top_k_mat.sum(axis=0)
|
57 |
+
all_size = word_emb.shape[0]
|
58 |
+
return top_k_count, all_size
|
59 |
+
|
60 |
+
def concat_batch_metrics(self, batch_metrics):
|
61 |
+
top_k_count = 0
|
62 |
+
all_size = 0
|
63 |
+
for batch_top_k_count, batch_all_size in batch_metrics:
|
64 |
+
top_k_count += batch_top_k_count
|
65 |
+
all_size += batch_all_size
|
66 |
+
R_precision = top_k_count / all_size
|
67 |
+
return R_precision
|
68 |
+
|
69 |
+
def parse_values(self, values):
|
70 |
+
metrics = {}
|
71 |
+
for top_k in range(self.top_k):
|
72 |
+
metrics['R_precision Top %d (mean)' % (top_k + 1)] = values[0][top_k]
|
73 |
+
metrics['R_precision Top %d (conf)' % (top_k + 1)] = values[1][top_k]
|
74 |
+
return metrics
|
mogen/core/evaluation/get_model.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from mogen.models import build_submodule
|
2 |
+
|
3 |
+
|
4 |
+
def get_motion_model(name, ckpt_path):
|
5 |
+
if name == 'kit_ml':
|
6 |
+
model = build_submodule(dict(
|
7 |
+
type='T2MMotionEncoder',
|
8 |
+
input_size=251,
|
9 |
+
movement_hidden_size=512,
|
10 |
+
movement_latent_size=512,
|
11 |
+
motion_hidden_size=1024,
|
12 |
+
motion_latent_size=512,
|
13 |
+
))
|
14 |
+
else:
|
15 |
+
model = build_submodule(dict(
|
16 |
+
type='T2MMotionEncoder',
|
17 |
+
input_size=263,
|
18 |
+
movement_hidden_size=512,
|
19 |
+
movement_latent_size=512,
|
20 |
+
motion_hidden_size=1024,
|
21 |
+
motion_latent_size=512,
|
22 |
+
))
|
23 |
+
model.load_pretrained(ckpt_path)
|
24 |
+
return model
|
25 |
+
|
26 |
+
def get_text_model(name, ckpt_path):
|
27 |
+
if name == 'kit_ml':
|
28 |
+
model = build_submodule(dict(
|
29 |
+
type='T2MTextEncoder',
|
30 |
+
word_size=300,
|
31 |
+
pos_size=15,
|
32 |
+
hidden_size=512,
|
33 |
+
output_size=512,
|
34 |
+
max_text_len=20
|
35 |
+
))
|
36 |
+
else:
|
37 |
+
model = build_submodule(dict(
|
38 |
+
type='T2MTextEncoder',
|
39 |
+
word_size=300,
|
40 |
+
pos_size=15,
|
41 |
+
hidden_size=512,
|
42 |
+
output_size=512,
|
43 |
+
max_text_len=20
|
44 |
+
))
|
45 |
+
model.load_pretrained(ckpt_path)
|
46 |
+
return model
|
mogen/core/evaluation/utils.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from scipy import linalg
|
3 |
+
|
4 |
+
|
5 |
+
def get_metric_statistics(values, replication_times):
|
6 |
+
mean = np.mean(values, axis=0)
|
7 |
+
std = np.std(values, axis=0)
|
8 |
+
conf_interval = 1.96 * std / np.sqrt(replication_times)
|
9 |
+
return mean, conf_interval
|
10 |
+
|
11 |
+
|
12 |
+
# (X - X_train)*(X - X_train) = -2X*X_train + X*X + X_train*X_train
|
13 |
+
def euclidean_distance_matrix(matrix1, matrix2):
|
14 |
+
"""
|
15 |
+
Params:
|
16 |
+
-- matrix1: N1 x D
|
17 |
+
-- matrix2: N2 x D
|
18 |
+
Returns:
|
19 |
+
-- dist: N1 x N2
|
20 |
+
dist[i, j] == distance(matrix1[i], matrix2[j])
|
21 |
+
"""
|
22 |
+
assert matrix1.shape[1] == matrix2.shape[1]
|
23 |
+
d1 = -2 * np.dot(matrix1, matrix2.T) # shape (num_test, num_train)
|
24 |
+
d2 = np.sum(np.square(matrix1), axis=1, keepdims=True) # shape (num_test, 1)
|
25 |
+
d3 = np.sum(np.square(matrix2), axis=1) # shape (num_train, )
|
26 |
+
dists = np.sqrt(d1 + d2 + d3) # broadcasting
|
27 |
+
return dists
|
28 |
+
|
29 |
+
|
30 |
+
def calculate_top_k(mat, top_k):
|
31 |
+
size = mat.shape[0]
|
32 |
+
gt_mat = np.expand_dims(np.arange(size), 1).repeat(size, 1)
|
33 |
+
bool_mat = (mat == gt_mat)
|
34 |
+
correct_vec = False
|
35 |
+
top_k_list = []
|
36 |
+
for i in range(top_k):
|
37 |
+
# print(correct_vec, bool_mat[:, i])
|
38 |
+
correct_vec = (correct_vec | bool_mat[:, i])
|
39 |
+
# print(correct_vec)
|
40 |
+
top_k_list.append(correct_vec[:, None])
|
41 |
+
top_k_mat = np.concatenate(top_k_list, axis=1)
|
42 |
+
return top_k_mat
|
43 |
+
|
44 |
+
|
45 |
+
def calculate_activation_statistics(activations):
|
46 |
+
"""
|
47 |
+
Params:
|
48 |
+
-- activation: num_samples x dim_feat
|
49 |
+
Returns:
|
50 |
+
-- mu: dim_feat
|
51 |
+
-- sigma: dim_feat x dim_feat
|
52 |
+
"""
|
53 |
+
mu = np.mean(activations, axis=0)
|
54 |
+
cov = np.cov(activations, rowvar=False)
|
55 |
+
return mu, cov
|
56 |
+
|
57 |
+
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
|
58 |
+
"""Numpy implementation of the Frechet Distance.
|
59 |
+
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
|
60 |
+
and X_2 ~ N(mu_2, C_2) is
|
61 |
+
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
|
62 |
+
Stable version by Dougal J. Sutherland.
|
63 |
+
Params:
|
64 |
+
-- mu1 : Numpy array containing the activations of a layer of the
|
65 |
+
inception net (like returned by the function 'get_predictions')
|
66 |
+
for generated samples.
|
67 |
+
-- mu2 : The sample mean over activations, precalculated on an
|
68 |
+
representative data set.
|
69 |
+
-- sigma1: The covariance matrix over activations for generated samples.
|
70 |
+
-- sigma2: The covariance matrix over activations, precalculated on an
|
71 |
+
representative data set.
|
72 |
+
Returns:
|
73 |
+
-- : The Frechet Distance.
|
74 |
+
"""
|
75 |
+
|
76 |
+
mu1 = np.atleast_1d(mu1)
|
77 |
+
mu2 = np.atleast_1d(mu2)
|
78 |
+
|
79 |
+
sigma1 = np.atleast_2d(sigma1)
|
80 |
+
sigma2 = np.atleast_2d(sigma2)
|
81 |
+
|
82 |
+
assert mu1.shape == mu2.shape, \
|
83 |
+
'Training and test mean vectors have different lengths'
|
84 |
+
assert sigma1.shape == sigma2.shape, \
|
85 |
+
'Training and test covariances have different dimensions'
|
86 |
+
|
87 |
+
diff = mu1 - mu2
|
88 |
+
|
89 |
+
# Product might be almost singular
|
90 |
+
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
|
91 |
+
if not np.isfinite(covmean).all():
|
92 |
+
msg = ('fid calculation produces singular product; '
|
93 |
+
'adding %s to diagonal of cov estimates') % eps
|
94 |
+
print(msg)
|
95 |
+
offset = np.eye(sigma1.shape[0]) * eps
|
96 |
+
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
|
97 |
+
|
98 |
+
# Numerical error might give slight imaginary component
|
99 |
+
if np.iscomplexobj(covmean):
|
100 |
+
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
|
101 |
+
m = np.max(np.abs(covmean.imag))
|
102 |
+
raise ValueError('Imaginary component {}'.format(m))
|
103 |
+
covmean = covmean.real
|
104 |
+
|
105 |
+
tr_covmean = np.trace(covmean)
|
106 |
+
|
107 |
+
return (diff.dot(diff) + np.trace(sigma1) +
|
108 |
+
np.trace(sigma2) - 2 * tr_covmean)
|
109 |
+
|
110 |
+
|
111 |
+
def calculate_diversity(activation, diversity_times):
|
112 |
+
assert len(activation.shape) == 2
|
113 |
+
assert activation.shape[0] > diversity_times
|
114 |
+
num_samples = activation.shape[0]
|
115 |
+
|
116 |
+
first_indices = np.random.choice(num_samples, diversity_times, replace=False)
|
117 |
+
second_indices = np.random.choice(num_samples, diversity_times, replace=False)
|
118 |
+
dist = linalg.norm(activation[first_indices] - activation[second_indices], axis=1)
|
119 |
+
return dist.mean()
|
120 |
+
|
121 |
+
|
122 |
+
def calculate_multimodality(activation, multimodality_times):
|
123 |
+
assert len(activation.shape) == 3
|
124 |
+
assert activation.shape[1] > multimodality_times
|
125 |
+
num_per_sent = activation.shape[1]
|
126 |
+
|
127 |
+
first_dices = np.random.choice(num_per_sent, multimodality_times, replace=False)
|
128 |
+
second_dices = np.random.choice(num_per_sent, multimodality_times, replace=False)
|
129 |
+
dist = linalg.norm(activation[:, first_dices] - activation[:, second_dices], axis=2)
|
130 |
+
return dist.mean()
|
mogen/core/optimizer/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .builder import OPTIMIZERS, build_optimizers
|
2 |
+
|
3 |
+
__all__ = ['build_optimizers', 'OPTIMIZERS']
|
mogen/core/optimizer/builder.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from mmcv.runner import build_optimizer
|
3 |
+
from mmcv.utils import Registry
|
4 |
+
|
5 |
+
OPTIMIZERS = Registry('optimizers')
|
6 |
+
|
7 |
+
|
8 |
+
def build_optimizers(model, cfgs):
|
9 |
+
"""Build multiple optimizers from configs. If `cfgs` contains several dicts
|
10 |
+
for optimizers, then a dict for each constructed optimizers will be
|
11 |
+
returned. If `cfgs` only contains one optimizer config, the constructed
|
12 |
+
optimizer itself will be returned. For example,
|
13 |
+
|
14 |
+
1) Multiple optimizer configs:
|
15 |
+
|
16 |
+
.. code-block:: python
|
17 |
+
|
18 |
+
optimizer_cfg = dict(
|
19 |
+
model1=dict(type='SGD', lr=lr),
|
20 |
+
model2=dict(type='SGD', lr=lr))
|
21 |
+
|
22 |
+
The return dict is
|
23 |
+
``dict('model1': torch.optim.Optimizer, 'model2': torch.optim.Optimizer)``
|
24 |
+
|
25 |
+
2) Single optimizer config:
|
26 |
+
|
27 |
+
.. code-block:: python
|
28 |
+
|
29 |
+
optimizer_cfg = dict(type='SGD', lr=lr)
|
30 |
+
|
31 |
+
The return is ``torch.optim.Optimizer``.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
model (:obj:`nn.Module`): The model with parameters to be optimized.
|
35 |
+
cfgs (dict): The config dict of the optimizer.
|
36 |
+
|
37 |
+
Returns:
|
38 |
+
dict[:obj:`torch.optim.Optimizer`] | :obj:`torch.optim.Optimizer`:
|
39 |
+
The initialized optimizers.
|
40 |
+
"""
|
41 |
+
optimizers = {}
|
42 |
+
if hasattr(model, 'module'):
|
43 |
+
model = model.module
|
44 |
+
# determine whether 'cfgs' has several dicts for optimizers
|
45 |
+
if all(isinstance(v, dict) for v in cfgs.values()):
|
46 |
+
for key, cfg in cfgs.items():
|
47 |
+
cfg_ = cfg.copy()
|
48 |
+
module = getattr(model, key)
|
49 |
+
optimizers[key] = build_optimizer(module, cfg_)
|
50 |
+
return optimizers
|
51 |
+
|
52 |
+
return build_optimizer(model, cfgs)
|
mogen/datasets/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .base_dataset import BaseMotionDataset
|
2 |
+
from .text_motion_dataset import TextMotionDataset
|
3 |
+
from .builder import DATASETS, PIPELINES, build_dataloader, build_dataset
|
4 |
+
from .pipelines import Compose
|
5 |
+
from .samplers import DistributedSampler
|
6 |
+
|
7 |
+
|
8 |
+
__all__ = [
|
9 |
+
'BaseMotionDataset', 'TextMotionDataset', 'DATASETS', 'PIPELINES', 'build_dataloader',
|
10 |
+
'build_dataset', 'Compose', 'DistributedSampler'
|
11 |
+
]
|
mogen/datasets/base_dataset.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import copy
|
3 |
+
from typing import Optional, Union
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
from torch.utils.data import Dataset
|
7 |
+
|
8 |
+
from .pipelines import Compose
|
9 |
+
from .builder import DATASETS
|
10 |
+
from mogen.core.evaluation import build_evaluator
|
11 |
+
|
12 |
+
|
13 |
+
@DATASETS.register_module()
|
14 |
+
class BaseMotionDataset(Dataset):
|
15 |
+
"""Base motion dataset.
|
16 |
+
Args:
|
17 |
+
data_prefix (str): the prefix of data path.
|
18 |
+
pipeline (list): a list of dict, where each element represents
|
19 |
+
a operation defined in `mogen.datasets.pipelines`.
|
20 |
+
ann_file (str | None, optional): the annotation file. When ann_file is
|
21 |
+
str, the subclass is expected to read from the ann_file. When
|
22 |
+
ann_file is None, the subclass is expected to read according
|
23 |
+
to data_prefix.
|
24 |
+
test_mode (bool): in train mode or test mode. Default: None.
|
25 |
+
dataset_name (str | None, optional): the name of dataset. It is used
|
26 |
+
to identify the type of evaluation metric. Default: None.
|
27 |
+
"""
|
28 |
+
|
29 |
+
def __init__(self,
|
30 |
+
data_prefix: str,
|
31 |
+
pipeline: list,
|
32 |
+
dataset_name: Optional[Union[str, None]] = None,
|
33 |
+
fixed_length: Optional[Union[int, None]] = None,
|
34 |
+
ann_file: Optional[Union[str, None]] = None,
|
35 |
+
motion_dir: Optional[Union[str, None]] = None,
|
36 |
+
eval_cfg: Optional[Union[dict, None]] = None,
|
37 |
+
test_mode: Optional[bool] = False):
|
38 |
+
super(BaseMotionDataset, self).__init__()
|
39 |
+
|
40 |
+
self.data_prefix = data_prefix
|
41 |
+
self.pipeline = Compose(pipeline)
|
42 |
+
self.dataset_name = dataset_name
|
43 |
+
self.fixed_length = fixed_length
|
44 |
+
self.ann_file = os.path.join(data_prefix, 'datasets', dataset_name, ann_file)
|
45 |
+
self.motion_dir = os.path.join(data_prefix, 'datasets', dataset_name, motion_dir)
|
46 |
+
self.eval_cfg = copy.deepcopy(eval_cfg)
|
47 |
+
self.test_mode = test_mode
|
48 |
+
|
49 |
+
self.load_annotations()
|
50 |
+
if self.test_mode:
|
51 |
+
self.prepare_evaluation()
|
52 |
+
|
53 |
+
def load_anno(self, name):
|
54 |
+
motion_path = os.path.join(self.motion_dir, name + '.npy')
|
55 |
+
motion_data = np.load(motion_path)
|
56 |
+
return {'motion': motion_data}
|
57 |
+
|
58 |
+
|
59 |
+
def load_annotations(self):
|
60 |
+
"""Load annotations from ``ann_file`` to ``data_infos``"""
|
61 |
+
self.data_infos = []
|
62 |
+
for line in open(self.ann_file, 'r').readlines():
|
63 |
+
line = line.strip()
|
64 |
+
self.data_infos.append(self.load_anno(line))
|
65 |
+
|
66 |
+
|
67 |
+
def prepare_data(self, idx: int):
|
68 |
+
""""Prepare raw data for the f'{idx'}-th data."""
|
69 |
+
results = copy.deepcopy(self.data_infos[idx])
|
70 |
+
results['dataset_name'] = self.dataset_name
|
71 |
+
results['sample_idx'] = idx
|
72 |
+
return self.pipeline(results)
|
73 |
+
|
74 |
+
def __len__(self):
|
75 |
+
"""Return the length of current dataset."""
|
76 |
+
if self.test_mode:
|
77 |
+
return len(self.eval_indexes)
|
78 |
+
elif self.fixed_length is not None:
|
79 |
+
return self.fixed_length
|
80 |
+
return len(self.data_infos)
|
81 |
+
|
82 |
+
def __getitem__(self, idx: int):
|
83 |
+
"""Prepare data for the ``idx``-th data.
|
84 |
+
As for video dataset, we can first parse raw data for each frame. Then
|
85 |
+
we combine annotations from all frames. This interface is used to
|
86 |
+
simplify the logic of video dataset and other special datasets.
|
87 |
+
"""
|
88 |
+
if self.test_mode:
|
89 |
+
idx = self.eval_indexes[idx]
|
90 |
+
elif self.fixed_length is not None:
|
91 |
+
idx = idx % len(self.data_infos)
|
92 |
+
return self.prepare_data(idx)
|
93 |
+
|
94 |
+
def prepare_evaluation(self):
|
95 |
+
self.evaluators = []
|
96 |
+
self.eval_indexes = []
|
97 |
+
for _ in range(self.eval_cfg['replication_times']):
|
98 |
+
eval_indexes = np.arange(len(self.data_infos))
|
99 |
+
if self.eval_cfg.get('shuffle_indexes', False):
|
100 |
+
np.random.shuffle(eval_indexes)
|
101 |
+
self.eval_indexes.append(eval_indexes)
|
102 |
+
for metric in self.eval_cfg['metrics']:
|
103 |
+
evaluator, self.eval_indexes = build_evaluator(
|
104 |
+
metric, self.eval_cfg, len(self.data_infos), self.eval_indexes)
|
105 |
+
self.evaluators.append(evaluator)
|
106 |
+
|
107 |
+
self.eval_indexes = np.concatenate(self.eval_indexes)
|
108 |
+
|
109 |
+
def evaluate(self, results, work_dir, logger=None):
|
110 |
+
metrics = {}
|
111 |
+
device = results[0]['motion'].device
|
112 |
+
for evaluator in self.evaluators:
|
113 |
+
evaluator.to_device(device)
|
114 |
+
metrics.update(evaluator.evaluate(results))
|
115 |
+
if logger is not None:
|
116 |
+
logger.info(metrics)
|
117 |
+
return metrics
|
mogen/datasets/builder.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import platform
|
2 |
+
import random
|
3 |
+
from functools import partial
|
4 |
+
from typing import Optional, Union
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
from mmcv.parallel import collate
|
8 |
+
from mmcv.runner import get_dist_info
|
9 |
+
from mmcv.utils import Registry, build_from_cfg
|
10 |
+
from torch.utils.data import DataLoader
|
11 |
+
from torch.utils.data.dataset import Dataset
|
12 |
+
|
13 |
+
from .samplers import DistributedSampler
|
14 |
+
|
15 |
+
if platform.system() != 'Windows':
|
16 |
+
# https://github.com/pytorch/pytorch/issues/973
|
17 |
+
import resource
|
18 |
+
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
|
19 |
+
base_soft_limit = rlimit[0]
|
20 |
+
hard_limit = rlimit[1]
|
21 |
+
soft_limit = min(max(4096, base_soft_limit), hard_limit)
|
22 |
+
resource.setrlimit(resource.RLIMIT_NOFILE, (soft_limit, hard_limit))
|
23 |
+
|
24 |
+
DATASETS = Registry('dataset')
|
25 |
+
PIPELINES = Registry('pipeline')
|
26 |
+
|
27 |
+
|
28 |
+
def build_dataset(cfg: Union[dict, list, tuple],
|
29 |
+
default_args: Optional[Union[dict, None]] = None):
|
30 |
+
""""Build dataset by the given config."""
|
31 |
+
from .dataset_wrappers import (
|
32 |
+
ConcatDataset,
|
33 |
+
RepeatDataset,
|
34 |
+
)
|
35 |
+
if isinstance(cfg, (list, tuple)):
|
36 |
+
dataset = ConcatDataset([build_dataset(c, default_args) for c in cfg])
|
37 |
+
elif cfg['type'] == 'RepeatDataset':
|
38 |
+
dataset = RepeatDataset(
|
39 |
+
build_dataset(cfg['dataset'], default_args), cfg['times'])
|
40 |
+
else:
|
41 |
+
dataset = build_from_cfg(cfg, DATASETS, default_args)
|
42 |
+
|
43 |
+
return dataset
|
44 |
+
|
45 |
+
|
46 |
+
def build_dataloader(dataset: Dataset,
|
47 |
+
samples_per_gpu: int,
|
48 |
+
workers_per_gpu: int,
|
49 |
+
num_gpus: Optional[int] = 1,
|
50 |
+
dist: Optional[bool] = True,
|
51 |
+
shuffle: Optional[bool] = True,
|
52 |
+
round_up: Optional[bool] = True,
|
53 |
+
seed: Optional[Union[int, None]] = None,
|
54 |
+
persistent_workers: Optional[bool] = True,
|
55 |
+
**kwargs):
|
56 |
+
"""Build PyTorch DataLoader.
|
57 |
+
In distributed training, each GPU/process has a dataloader.
|
58 |
+
In non-distributed training, there is only one dataloader for all GPUs.
|
59 |
+
Args:
|
60 |
+
dataset (:obj:`Dataset`): A PyTorch dataset.
|
61 |
+
samples_per_gpu (int): Number of training samples on each GPU, i.e.,
|
62 |
+
batch size of each GPU.
|
63 |
+
workers_per_gpu (int): How many subprocesses to use for data loading
|
64 |
+
for each GPU.
|
65 |
+
num_gpus (int, optional): Number of GPUs. Only used in non-distributed
|
66 |
+
training.
|
67 |
+
dist (bool, optional): Distributed training/test or not. Default: True.
|
68 |
+
shuffle (bool, optional): Whether to shuffle the data at every epoch.
|
69 |
+
Default: True.
|
70 |
+
round_up (bool, optional): Whether to round up the length of dataset by
|
71 |
+
adding extra samples to make it evenly divisible. Default: True.
|
72 |
+
kwargs: any keyword argument to be used to initialize DataLoader
|
73 |
+
Returns:
|
74 |
+
DataLoader: A PyTorch dataloader.
|
75 |
+
"""
|
76 |
+
rank, world_size = get_dist_info()
|
77 |
+
if dist:
|
78 |
+
sampler = DistributedSampler(
|
79 |
+
dataset, world_size, rank, shuffle=shuffle, round_up=round_up)
|
80 |
+
shuffle = False
|
81 |
+
batch_size = samples_per_gpu
|
82 |
+
num_workers = workers_per_gpu
|
83 |
+
else:
|
84 |
+
sampler = None
|
85 |
+
batch_size = num_gpus * samples_per_gpu
|
86 |
+
num_workers = num_gpus * workers_per_gpu
|
87 |
+
|
88 |
+
init_fn = partial(
|
89 |
+
worker_init_fn, num_workers=num_workers, rank=rank,
|
90 |
+
seed=seed) if seed is not None else None
|
91 |
+
|
92 |
+
data_loader = DataLoader(
|
93 |
+
dataset,
|
94 |
+
batch_size=batch_size,
|
95 |
+
sampler=sampler,
|
96 |
+
num_workers=num_workers,
|
97 |
+
collate_fn=partial(collate, samples_per_gpu=samples_per_gpu),
|
98 |
+
pin_memory=False,
|
99 |
+
shuffle=shuffle,
|
100 |
+
worker_init_fn=init_fn,
|
101 |
+
persistent_workers=persistent_workers,
|
102 |
+
**kwargs)
|
103 |
+
|
104 |
+
return data_loader
|
105 |
+
|
106 |
+
|
107 |
+
def worker_init_fn(worker_id: int, num_workers: int, rank: int, seed: int):
|
108 |
+
"""Init random seed for each worker."""
|
109 |
+
# The seed of each worker equals to
|
110 |
+
# num_worker * rank + worker_id + user_seed
|
111 |
+
worker_seed = num_workers * rank + worker_id + seed
|
112 |
+
np.random.seed(worker_seed)
|
113 |
+
random.seed(worker_seed)
|
mogen/datasets/dataset_wrappers.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.utils.data.dataset import ConcatDataset as _ConcatDataset
|
2 |
+
from torch.utils.data.dataset import Dataset
|
3 |
+
|
4 |
+
from .builder import DATASETS
|
5 |
+
|
6 |
+
|
7 |
+
@DATASETS.register_module()
|
8 |
+
class ConcatDataset(_ConcatDataset):
|
9 |
+
"""A wrapper of concatenated dataset.
|
10 |
+
Same as :obj:`torch.utils.data.dataset.ConcatDataset`, but
|
11 |
+
add `get_cat_ids` function.
|
12 |
+
Args:
|
13 |
+
datasets (list[:obj:`Dataset`]): A list of datasets.
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(self, datasets: list):
|
17 |
+
super(ConcatDataset, self).__init__(datasets)
|
18 |
+
|
19 |
+
|
20 |
+
@DATASETS.register_module()
|
21 |
+
class RepeatDataset(object):
|
22 |
+
"""A wrapper of repeated dataset.
|
23 |
+
The length of repeated dataset will be `times` larger than the original
|
24 |
+
dataset. This is useful when the data loading time is long but the dataset
|
25 |
+
is small. Using RepeatDataset can reduce the data loading time between
|
26 |
+
epochs.
|
27 |
+
Args:
|
28 |
+
dataset (:obj:`Dataset`): The dataset to be repeated.
|
29 |
+
times (int): Repeat times.
|
30 |
+
"""
|
31 |
+
|
32 |
+
def __init__(self, dataset: Dataset, times: int):
|
33 |
+
self.dataset = dataset
|
34 |
+
self.times = times
|
35 |
+
|
36 |
+
self._ori_len = len(self.dataset)
|
37 |
+
|
38 |
+
def __getitem__(self, idx: int):
|
39 |
+
return self.dataset[idx % self._ori_len]
|
40 |
+
|
41 |
+
def __len__(self):
|
42 |
+
return self.times * self._ori_len
|
mogen/datasets/pipelines/__init__.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .compose import Compose
|
2 |
+
from .formatting import (
|
3 |
+
to_tensor,
|
4 |
+
ToTensor,
|
5 |
+
Transpose,
|
6 |
+
Collect,
|
7 |
+
WrapFieldsToLists
|
8 |
+
)
|
9 |
+
from .transforms import (
|
10 |
+
Crop,
|
11 |
+
RandomCrop,
|
12 |
+
Normalize
|
13 |
+
)
|
14 |
+
|
15 |
+
__all__ = [
|
16 |
+
'Compose', 'to_tensor', 'Transpose', 'Collect', 'WrapFieldsToLists', 'ToTensor',
|
17 |
+
'Crop', 'RandomCrop', 'Normalize'
|
18 |
+
]
|
mogen/datasets/pipelines/compose.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections.abc import Sequence
|
2 |
+
|
3 |
+
from mmcv.utils import build_from_cfg
|
4 |
+
|
5 |
+
from ..builder import PIPELINES
|
6 |
+
|
7 |
+
|
8 |
+
@PIPELINES.register_module()
|
9 |
+
class Compose(object):
|
10 |
+
"""Compose a data pipeline with a sequence of transforms.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
transforms (list[dict | callable]):
|
14 |
+
Either config dicts of transforms or transform objects.
|
15 |
+
"""
|
16 |
+
|
17 |
+
def __init__(self, transforms):
|
18 |
+
assert isinstance(transforms, Sequence)
|
19 |
+
self.transforms = []
|
20 |
+
for transform in transforms:
|
21 |
+
if isinstance(transform, dict):
|
22 |
+
transform = build_from_cfg(transform, PIPELINES)
|
23 |
+
self.transforms.append(transform)
|
24 |
+
elif callable(transform):
|
25 |
+
self.transforms.append(transform)
|
26 |
+
else:
|
27 |
+
raise TypeError('transform must be callable or a dict, but got'
|
28 |
+
f' {type(transform)}')
|
29 |
+
|
30 |
+
def __call__(self, data):
|
31 |
+
for t in self.transforms:
|
32 |
+
data = t(data)
|
33 |
+
if data is None:
|
34 |
+
return None
|
35 |
+
return data
|
36 |
+
|
37 |
+
def __repr__(self):
|
38 |
+
format_string = self.__class__.__name__ + '('
|
39 |
+
for t in self.transforms:
|
40 |
+
format_string += f'\n {t}'
|
41 |
+
format_string += '\n)'
|
42 |
+
return format_string
|
mogen/datasets/pipelines/formatting.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections.abc import Sequence
|
2 |
+
|
3 |
+
import mmcv
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from mmcv.parallel import DataContainer as DC
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
from ..builder import PIPELINES
|
10 |
+
|
11 |
+
|
12 |
+
def to_tensor(data):
|
13 |
+
"""Convert objects of various python types to :obj:`torch.Tensor`.
|
14 |
+
|
15 |
+
Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`,
|
16 |
+
:class:`Sequence`, :class:`int` and :class:`float`.
|
17 |
+
"""
|
18 |
+
if isinstance(data, torch.Tensor):
|
19 |
+
return data
|
20 |
+
elif isinstance(data, np.ndarray):
|
21 |
+
return torch.from_numpy(data)
|
22 |
+
elif isinstance(data, Sequence) and not mmcv.is_str(data):
|
23 |
+
return torch.tensor(data)
|
24 |
+
elif isinstance(data, int):
|
25 |
+
return torch.LongTensor([data])
|
26 |
+
elif isinstance(data, float):
|
27 |
+
return torch.FloatTensor([data])
|
28 |
+
else:
|
29 |
+
raise TypeError(
|
30 |
+
f'Type {type(data)} cannot be converted to tensor.'
|
31 |
+
'Supported types are: `numpy.ndarray`, `torch.Tensor`, '
|
32 |
+
'`Sequence`, `int` and `float`')
|
33 |
+
|
34 |
+
|
35 |
+
@PIPELINES.register_module()
|
36 |
+
class ToTensor(object):
|
37 |
+
|
38 |
+
def __init__(self, keys):
|
39 |
+
self.keys = keys
|
40 |
+
|
41 |
+
def __call__(self, results):
|
42 |
+
for key in self.keys:
|
43 |
+
results[key] = to_tensor(results[key])
|
44 |
+
return results
|
45 |
+
|
46 |
+
def __repr__(self):
|
47 |
+
return self.__class__.__name__ + f'(keys={self.keys})'
|
48 |
+
|
49 |
+
|
50 |
+
@PIPELINES.register_module()
|
51 |
+
class Transpose(object):
|
52 |
+
|
53 |
+
def __init__(self, keys, order):
|
54 |
+
self.keys = keys
|
55 |
+
self.order = order
|
56 |
+
|
57 |
+
def __call__(self, results):
|
58 |
+
for key in self.keys:
|
59 |
+
results[key] = results[key].transpose(self.order)
|
60 |
+
return results
|
61 |
+
|
62 |
+
def __repr__(self):
|
63 |
+
return self.__class__.__name__ + \
|
64 |
+
f'(keys={self.keys}, order={self.order})'
|
65 |
+
|
66 |
+
|
67 |
+
@PIPELINES.register_module()
|
68 |
+
class Collect(object):
|
69 |
+
"""Collect data from the loader relevant to the specific task.
|
70 |
+
|
71 |
+
This is usually the last stage of the data loader pipeline.
|
72 |
+
|
73 |
+
Args:
|
74 |
+
keys (Sequence[str]): Keys of results to be collected in ``data``.
|
75 |
+
meta_keys (Sequence[str], optional): Meta keys to be converted to
|
76 |
+
``mmcv.DataContainer`` and collected in ``data[motion_metas]``.
|
77 |
+
Default: ``('filename', 'ori_filename', 'ori_shape', 'motion_shape', 'motion_mask')``
|
78 |
+
|
79 |
+
Returns:
|
80 |
+
dict: The result dict contains the following keys
|
81 |
+
- keys in``self.keys``
|
82 |
+
- ``motion_metas`` if available
|
83 |
+
"""
|
84 |
+
|
85 |
+
def __init__(self,
|
86 |
+
keys,
|
87 |
+
meta_keys=('filename', 'ori_filename', 'ori_shape', 'motion_shape', 'motion_mask')):
|
88 |
+
self.keys = keys
|
89 |
+
self.meta_keys = meta_keys
|
90 |
+
|
91 |
+
def __call__(self, results):
|
92 |
+
data = {}
|
93 |
+
motion_meta = {}
|
94 |
+
for key in self.meta_keys:
|
95 |
+
if key in results:
|
96 |
+
motion_meta[key] = results[key]
|
97 |
+
data['motion_metas'] = DC(motion_meta, cpu_only=True)
|
98 |
+
for key in self.keys:
|
99 |
+
data[key] = results[key]
|
100 |
+
return data
|
101 |
+
|
102 |
+
def __repr__(self):
|
103 |
+
return self.__class__.__name__ + \
|
104 |
+
f'(keys={self.keys}, meta_keys={self.meta_keys})'
|
105 |
+
|
106 |
+
|
107 |
+
@PIPELINES.register_module()
|
108 |
+
class WrapFieldsToLists(object):
|
109 |
+
"""Wrap fields of the data dictionary into lists for evaluation.
|
110 |
+
|
111 |
+
This class can be used as a last step of a test or validation
|
112 |
+
pipeline for single image evaluation or inference.
|
113 |
+
|
114 |
+
Example:
|
115 |
+
>>> test_pipeline = [
|
116 |
+
>>> dict(type='LoadImageFromFile'),
|
117 |
+
>>> dict(type='Normalize',
|
118 |
+
mean=[123.675, 116.28, 103.53],
|
119 |
+
std=[58.395, 57.12, 57.375],
|
120 |
+
to_rgb=True),
|
121 |
+
>>> dict(type='ImageToTensor', keys=['img']),
|
122 |
+
>>> dict(type='Collect', keys=['img']),
|
123 |
+
>>> dict(type='WrapIntoLists')
|
124 |
+
>>> ]
|
125 |
+
"""
|
126 |
+
|
127 |
+
def __call__(self, results):
|
128 |
+
# Wrap dict fields into lists
|
129 |
+
for key, val in results.items():
|
130 |
+
results[key] = [val]
|
131 |
+
return results
|
132 |
+
|
133 |
+
def __repr__(self):
|
134 |
+
return f'{self.__class__.__name__}()'
|
mogen/datasets/pipelines/transforms.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import random
|
3 |
+
|
4 |
+
import mmcv
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
from ..builder import PIPELINES
|
8 |
+
import torch
|
9 |
+
from typing import Optional, Tuple, Union
|
10 |
+
|
11 |
+
|
12 |
+
@PIPELINES.register_module()
|
13 |
+
class Crop(object):
|
14 |
+
r"""Crop motion sequences.
|
15 |
+
|
16 |
+
Args:
|
17 |
+
crop_size (int): The size of the cropped motion sequence.
|
18 |
+
"""
|
19 |
+
def __init__(self,
|
20 |
+
crop_size: Optional[Union[int, None]] = None):
|
21 |
+
self.crop_size = crop_size
|
22 |
+
assert self.crop_size is not None
|
23 |
+
|
24 |
+
def __call__(self, results):
|
25 |
+
motion = results['motion']
|
26 |
+
length = len(motion)
|
27 |
+
if length >= self.crop_size:
|
28 |
+
idx = random.randint(0, length - self.crop_size)
|
29 |
+
motion = motion[idx: idx + self.crop_size]
|
30 |
+
results['motion_length'] = self.crop_size
|
31 |
+
else:
|
32 |
+
padding_length = self.crop_size - length
|
33 |
+
D = motion.shape[1:]
|
34 |
+
padding_zeros = np.zeros((padding_length, *D), dtype=np.float32)
|
35 |
+
motion = np.concatenate([motion, padding_zeros], axis=0)
|
36 |
+
results['motion_length'] = length
|
37 |
+
assert len(motion) == self.crop_size
|
38 |
+
results['motion'] = motion
|
39 |
+
results['motion_shape'] = motion.shape
|
40 |
+
if length >= self.crop_size:
|
41 |
+
results['motion_mask'] = torch.ones(self.crop_size).numpy()
|
42 |
+
else:
|
43 |
+
results['motion_mask'] = torch.cat(
|
44 |
+
(torch.ones(length), torch.zeros(self.crop_size - length))).numpy()
|
45 |
+
return results
|
46 |
+
|
47 |
+
|
48 |
+
def __repr__(self):
|
49 |
+
repr_str = self.__class__.__name__ + f'(crop_size={self.crop_size})'
|
50 |
+
return repr_str
|
51 |
+
|
52 |
+
@PIPELINES.register_module()
|
53 |
+
class RandomCrop(object):
|
54 |
+
r"""Random crop motion sequences. Each sequence will be padded with zeros to the maximum length.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
min_size (int or None): The minimum size of the cropped motion sequence (inclusive).
|
58 |
+
max_size (int or None): The maximum size of the cropped motion sequence (inclusive).
|
59 |
+
"""
|
60 |
+
def __init__(self,
|
61 |
+
min_size: Optional[Union[int, None]] = None,
|
62 |
+
max_size: Optional[Union[int, None]] = None):
|
63 |
+
self.min_size = min_size
|
64 |
+
self.max_size = max_size
|
65 |
+
assert self.min_size is not None
|
66 |
+
assert self.max_size is not None
|
67 |
+
|
68 |
+
def __call__(self, results):
|
69 |
+
motion = results['motion']
|
70 |
+
length = len(motion)
|
71 |
+
crop_size = random.randint(self.min_size, self.max_size)
|
72 |
+
if length > crop_size:
|
73 |
+
idx = random.randint(0, length - crop_size)
|
74 |
+
motion = motion[idx: idx + crop_size]
|
75 |
+
results['motion_length'] = crop_size
|
76 |
+
else:
|
77 |
+
results['motion_length'] = length
|
78 |
+
padding_length = self.max_size - min(crop_size, length)
|
79 |
+
if padding_length > 0:
|
80 |
+
D = motion.shape[1:]
|
81 |
+
padding_zeros = np.zeros((padding_length, *D), dtype=np.float32)
|
82 |
+
motion = np.concatenate([motion, padding_zeros], axis=0)
|
83 |
+
results['motion'] = motion
|
84 |
+
results['motion_shape'] = motion.shape
|
85 |
+
if length >= self.max_size and crop_size == self.max_size:
|
86 |
+
results['motion_mask'] = torch.ones(self.max_size).numpy()
|
87 |
+
else:
|
88 |
+
results['motion_mask'] = torch.cat((
|
89 |
+
torch.ones(min(length, crop_size)),
|
90 |
+
torch.zeros(self.max_size - min(length, crop_size))), dim=0).numpy()
|
91 |
+
assert len(motion) == self.max_size
|
92 |
+
return results
|
93 |
+
|
94 |
+
|
95 |
+
def __repr__(self):
|
96 |
+
repr_str = self.__class__.__name__ + f'(min_size={self.min_size}'
|
97 |
+
repr_str += f', max_size={self.max_size})'
|
98 |
+
return repr_str
|
99 |
+
|
100 |
+
@PIPELINES.register_module()
|
101 |
+
class Normalize(object):
|
102 |
+
"""Normalize motion sequences.
|
103 |
+
|
104 |
+
Args:
|
105 |
+
mean_path (str): Path of mean file.
|
106 |
+
std_path (str): Path of std file.
|
107 |
+
"""
|
108 |
+
|
109 |
+
def __init__(self, mean_path, std_path, eps=1e-9):
|
110 |
+
self.mean = np.load(mean_path)
|
111 |
+
self.std = np.load(std_path)
|
112 |
+
self.eps = eps
|
113 |
+
|
114 |
+
def __call__(self, results):
|
115 |
+
motion = results['motion']
|
116 |
+
motion = (motion - self.mean) / (self.std + self.eps)
|
117 |
+
results['motion'] = motion
|
118 |
+
results['motion_norm_mean'] = self.mean
|
119 |
+
results['motion_norm_std'] = self.std
|
120 |
+
return results
|
mogen/datasets/samplers/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .distributed_sampler import DistributedSampler
|
2 |
+
|
3 |
+
__all__ = ['DistributedSampler']
|
mogen/datasets/samplers/distributed_sampler.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.utils.data import DistributedSampler as _DistributedSampler
|
3 |
+
|
4 |
+
|
5 |
+
class DistributedSampler(_DistributedSampler):
|
6 |
+
|
7 |
+
def __init__(self,
|
8 |
+
dataset,
|
9 |
+
num_replicas=None,
|
10 |
+
rank=None,
|
11 |
+
shuffle=True,
|
12 |
+
round_up=True):
|
13 |
+
super().__init__(dataset, num_replicas=num_replicas, rank=rank)
|
14 |
+
self.shuffle = shuffle
|
15 |
+
self.round_up = round_up
|
16 |
+
if self.round_up:
|
17 |
+
self.total_size = self.num_samples * self.num_replicas
|
18 |
+
else:
|
19 |
+
self.total_size = len(self.dataset)
|
20 |
+
|
21 |
+
def __iter__(self):
|
22 |
+
# deterministically shuffle based on epoch
|
23 |
+
if self.shuffle:
|
24 |
+
g = torch.Generator()
|
25 |
+
g.manual_seed(self.epoch)
|
26 |
+
indices = torch.randperm(len(self.dataset), generator=g).tolist()
|
27 |
+
else:
|
28 |
+
indices = torch.arange(len(self.dataset)).tolist()
|
29 |
+
|
30 |
+
# add extra samples to make it evenly divisible
|
31 |
+
if self.round_up:
|
32 |
+
indices = (
|
33 |
+
indices *
|
34 |
+
int(self.total_size / len(indices) + 1))[:self.total_size]
|
35 |
+
assert len(indices) == self.total_size
|
36 |
+
|
37 |
+
# subsample
|
38 |
+
indices = indices[self.rank:self.total_size:self.num_replicas]
|
39 |
+
if self.round_up:
|
40 |
+
assert len(indices) == self.num_samples
|
41 |
+
|
42 |
+
return iter(indices)
|
mogen/datasets/text_motion_dataset.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import os.path
|
4 |
+
from abc import ABCMeta
|
5 |
+
from collections import OrderedDict
|
6 |
+
from typing import Any, List, Optional, Union
|
7 |
+
|
8 |
+
import mmcv
|
9 |
+
import copy
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
import torch.distributed as dist
|
13 |
+
from mmcv.runner import get_dist_info
|
14 |
+
|
15 |
+
from .base_dataset import BaseMotionDataset
|
16 |
+
from .builder import DATASETS
|
17 |
+
|
18 |
+
|
19 |
+
@DATASETS.register_module()
|
20 |
+
class TextMotionDataset(BaseMotionDataset):
|
21 |
+
"""TextMotion dataset.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
text_dir (str): Path to the directory containing the text files.
|
25 |
+
"""
|
26 |
+
def __init__(self,
|
27 |
+
data_prefix: str,
|
28 |
+
pipeline: list,
|
29 |
+
dataset_name: Optional[Union[str, None]] = None,
|
30 |
+
fixed_length: Optional[Union[int, None]] = None,
|
31 |
+
ann_file: Optional[Union[str, None]] = None,
|
32 |
+
motion_dir: Optional[Union[str, None]] = None,
|
33 |
+
text_dir: Optional[Union[str, None]] = None,
|
34 |
+
token_dir: Optional[Union[str, None]] = None,
|
35 |
+
clip_feat_dir: Optional[Union[str, None]] = None,
|
36 |
+
eval_cfg: Optional[Union[dict, None]] = None,
|
37 |
+
fine_mode: Optional[bool] = False,
|
38 |
+
test_mode: Optional[bool] = False):
|
39 |
+
self.text_dir = os.path.join(data_prefix, 'datasets', dataset_name, text_dir)
|
40 |
+
if token_dir is not None:
|
41 |
+
self.token_dir = os.path.join(data_prefix, 'datasets', dataset_name, token_dir)
|
42 |
+
else:
|
43 |
+
self.token_dir = None
|
44 |
+
if clip_feat_dir is not None:
|
45 |
+
self.clip_feat_dir = os.path.join(data_prefix, 'datasets', dataset_name, clip_feat_dir)
|
46 |
+
else:
|
47 |
+
self.clip_feat_dir = None
|
48 |
+
self.fine_mode = fine_mode
|
49 |
+
super(TextMotionDataset, self).__init__(
|
50 |
+
data_prefix=data_prefix,
|
51 |
+
pipeline=pipeline,
|
52 |
+
dataset_name=dataset_name,
|
53 |
+
fixed_length=fixed_length,
|
54 |
+
ann_file=ann_file,
|
55 |
+
motion_dir=motion_dir,
|
56 |
+
eval_cfg=eval_cfg,
|
57 |
+
test_mode=test_mode)
|
58 |
+
|
59 |
+
def load_anno(self, name):
|
60 |
+
results = super().load_anno(name)
|
61 |
+
text_path = os.path.join(self.text_dir, name + '.txt')
|
62 |
+
text_data = []
|
63 |
+
for line in open(text_path, 'r'):
|
64 |
+
text_data.append(line.strip())
|
65 |
+
results['text'] = text_data
|
66 |
+
if self.token_dir is not None:
|
67 |
+
token_path = os.path.join(self.token_dir, name + '.txt')
|
68 |
+
token_data = []
|
69 |
+
for line in open(token_path, 'r'):
|
70 |
+
token_data.append(line.strip())
|
71 |
+
results['token'] = token_data
|
72 |
+
if self.clip_feat_dir is not None:
|
73 |
+
clip_feat_path = os.path.join(self.clip_feat_dir, name + '.npy')
|
74 |
+
clip_feat = torch.from_numpy(np.load(clip_feat_path))
|
75 |
+
results['clip_feat'] = clip_feat
|
76 |
+
return results
|
77 |
+
|
78 |
+
def prepare_data(self, idx: int):
|
79 |
+
""""Prepare raw data for the f'{idx'}-th data."""
|
80 |
+
results = copy.deepcopy(self.data_infos[idx])
|
81 |
+
text_list = results['text']
|
82 |
+
idx = np.random.randint(0, len(text_list))
|
83 |
+
if self.fine_mode:
|
84 |
+
results['text'] = json.loads(text_list[idx])
|
85 |
+
else:
|
86 |
+
results['text'] = text_list[idx]
|
87 |
+
if 'clip_feat' in results.keys():
|
88 |
+
results['clip_feat'] = results['clip_feat'][idx]
|
89 |
+
if 'token' in results.keys():
|
90 |
+
results['token'] = results['token'][idx]
|
91 |
+
results['dataset_name'] = self.dataset_name
|
92 |
+
results['sample_idx'] = idx
|
93 |
+
return self.pipeline(results)
|
mogen/models/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .architectures import *
|
2 |
+
from .losses import *
|
3 |
+
from .rnns import *
|
4 |
+
from .transformers import *
|
5 |
+
from .attentions import *
|
6 |
+
from .builder import *
|
7 |
+
from .utils import *
|