import torch import torch.nn as nn import torch.nn.functional as F from ..utils.stylization_block import StylizationBlock from ..builder import ATTENTIONS @ATTENTIONS.register_module() class BaseMixedAttention(nn.Module): def __init__(self, latent_dim, text_latent_dim, num_heads, dropout, time_embed_dim): super().__init__() self.num_heads = num_heads self.norm = nn.LayerNorm(latent_dim) self.text_norm = nn.LayerNorm(text_latent_dim) self.query = nn.Linear(latent_dim, latent_dim) self.key_text = nn.Linear(text_latent_dim, latent_dim) self.value_text = nn.Linear(text_latent_dim, latent_dim) self.key_motion = nn.Linear(latent_dim, latent_dim) self.value_motion = nn.Linear(latent_dim, latent_dim) self.dropout = nn.Dropout(dropout) self.proj_out = StylizationBlock(latent_dim, time_embed_dim, dropout) def forward(self, x, xf, emb, src_mask, cond_type, **kwargs): """ x: B, T, D xf: B, N, L """ B, T, D = x.shape N = xf.shape[1] + x.shape[1] H = self.num_heads # B, T, D query = self.query(self.norm(x)).view(B, T, H, -1) # B, N, D text_cond_type = ((cond_type % 10) > 0).float().view(B, 1, 1).repeat(1, xf.shape[1], 1) key = torch.cat(( self.key_text(self.text_norm(xf)), self.key_motion(self.norm(x)) ), dim=1).view(B, N, H, -1) attention = torch.einsum('bnhl,bmhl->bnmh', query, key) motion_mask = src_mask.view(B, 1, T, 1) text_mask = text_cond_type.view(B, 1, -1, 1) mask = torch.cat((text_mask, motion_mask), dim=2) attention = attention + (1 - mask) * -1000000 attention = F.softmax(attention, dim=2) value = torch.cat(( self.value_text(self.text_norm(xf)) * text_cond_type, self.value_motion(self.norm(x)) * src_mask, ), dim=1).view(B, N, H, -1) y = torch.einsum('bnmh,bmhl->bnhl', attention, value).reshape(B, T, D) y = x + self.proj_out(y, emb) return y @ATTENTIONS.register_module() class BaseSelfAttention(nn.Module): def __init__(self, latent_dim, num_heads, dropout, time_embed_dim): super().__init__() self.num_heads = num_heads self.norm = nn.LayerNorm(latent_dim) self.query = nn.Linear(latent_dim, latent_dim) self.key = nn.Linear(latent_dim, latent_dim) self.value = nn.Linear(latent_dim, latent_dim) self.dropout = nn.Dropout(dropout) self.proj_out = StylizationBlock(latent_dim, time_embed_dim, dropout) def forward(self, x, emb, src_mask, **kwargs): """ x: B, T, D """ B, T, D = x.shape H = self.num_heads # B, T, D query = self.query(self.norm(x)).view(B, T, H, -1) # B, N, D key = self.key(self.norm(x)).view(B, T, H, -1) attention = torch.einsum('bnhl,bmhl->bnmh', query, key) mask = src_mask.view(B, 1, T, 1) attention = attention + (1 - mask) * -1000000 attention = F.softmax(attention, dim=2) value = (self.value(self.norm(x)) * src_mask).view(B, T, H, -1) y = torch.einsum('bnmh,bmhl->bnhl', attention, value).reshape(B, T, D) y = x + self.proj_out(y, emb) return y @ATTENTIONS.register_module() class BaseCrossAttention(nn.Module): def __init__(self, latent_dim, text_latent_dim, num_heads, dropout, time_embed_dim): super().__init__() self.num_heads = num_heads self.norm = nn.LayerNorm(latent_dim) self.text_norm = nn.LayerNorm(text_latent_dim) self.query = nn.Linear(latent_dim, latent_dim) self.key = nn.Linear(text_latent_dim, latent_dim) self.value = nn.Linear(text_latent_dim, latent_dim) self.dropout = nn.Dropout(dropout) self.proj_out = StylizationBlock(latent_dim, time_embed_dim, dropout) def forward(self, x, xf, emb, src_mask, cond_type, **kwargs): """ x: B, T, D xf: B, N, L """ B, T, D = x.shape N = xf.shape[1] H = self.num_heads # B, T, D query = self.query(self.norm(x)).view(B, T, H, -1) # B, N, D text_cond_type = ((cond_type % 10) > 0).float().view(B, 1, 1).repeat(1, xf.shape[1], 1) key = self.key(self.text_norm(xf)).view(B, N, H, -1) attention = torch.einsum('bnhl,bmhl->bnmh', query, key) mask = text_cond_type.view(B, 1, -1, 1) attention = attention + (1 - mask) * -1000000 attention = F.softmax(attention, dim=2) value = (self.value(self.text_norm(xf)) * text_cond_type).view(B, N, H, -1) y = torch.einsum('bnmh,bmhl->bnhl', attention, value).reshape(B, T, D) y = x + self.proj_out(y, emb) return y