from abc import ABCMeta, abstractmethod from cv2 import norm import torch from torch import layer_norm, nn import torch.nn.functional as F from mmcv.runner import BaseModule import numpy as np from ..builder import SUBMODULES, build_attention from .position_encoding import SinusoidalPositionalEncoding, LearnedPositionalEncoding from ..utils.stylization_block import StylizationBlock import math import clip def timestep_embedding(timesteps, dim, max_period=10000): """ Create sinusoidal timestep embeddings. :param timesteps: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an [N x dim] Tensor of positional embeddings. """ half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half ).to(device=timesteps.device) args = timesteps[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) return embedding def set_requires_grad(nets, requires_grad=False): """Set requies_grad for all the networks. Args: nets (nn.Module | list[nn.Module]): A list of networks or a single network. requires_grad (bool): Whether the networks require gradients or not """ if not isinstance(nets, list): nets = [nets] for net in nets: if net is not None: for param in net.parameters(): param.requires_grad = requires_grad def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module class FFN(nn.Module): def __init__(self, latent_dim, ffn_dim, dropout, time_embed_dim): super().__init__() self.linear1 = nn.Linear(latent_dim, ffn_dim) self.linear2 = zero_module(nn.Linear(ffn_dim, latent_dim)) self.activation = nn.GELU() self.dropout = nn.Dropout(dropout) self.proj_out = StylizationBlock(latent_dim, time_embed_dim, dropout) def forward(self, x, emb, **kwargs): y = self.linear2(self.dropout(self.activation(self.linear1(x)))) y = x + self.proj_out(y, emb) return y class DecoderLayer(nn.Module): def __init__(self, sa_block_cfg=None, ca_block_cfg=None, ffn_cfg=None): super().__init__() self.sa_block = build_attention(sa_block_cfg) self.ca_block = build_attention(ca_block_cfg) self.ffn = FFN(**ffn_cfg) def forward(self, **kwargs): if self.sa_block is not None: x = self.sa_block(**kwargs) kwargs.update({'x': x}) if self.ca_block is not None: x = self.ca_block(**kwargs) kwargs.update({'x': x}) if self.ffn is not None: x = self.ffn(**kwargs) return x class DiffusionTransformer(BaseModule, metaclass=ABCMeta): def __init__(self, input_feats, max_seq_len=240, latent_dim=512, time_embed_dim=2048, num_layers=8, sa_block_cfg=None, ca_block_cfg=None, ffn_cfg=None, text_encoder=None, use_cache_for_text=False, init_cfg=None): super().__init__(init_cfg=init_cfg) self.input_feats = input_feats self.max_seq_len = max_seq_len self.latent_dim = latent_dim self.num_layers = num_layers self.time_embed_dim = time_embed_dim self.sequence_embedding = nn.Parameter(torch.randn(max_seq_len, latent_dim)) self.use_cache_for_text = use_cache_for_text if use_cache_for_text: self.text_cache = {} self.build_text_encoder(text_encoder) # Input Embedding self.joint_embed = nn.Linear(self.input_feats, self.latent_dim) self.time_embed = nn.Sequential( nn.Linear(self.latent_dim, self.time_embed_dim), nn.SiLU(), nn.Linear(self.time_embed_dim, self.time_embed_dim), ) self.build_temporal_blocks(sa_block_cfg, ca_block_cfg, ffn_cfg) # Output Module self.out = zero_module(nn.Linear(self.latent_dim, self.input_feats)) def build_temporal_blocks(self, sa_block_cfg, ca_block_cfg, ffn_cfg): self.temporal_decoder_blocks = nn.ModuleList() for i in range(self.num_layers): self.temporal_decoder_blocks.append( DecoderLayer( sa_block_cfg=sa_block_cfg, ca_block_cfg=ca_block_cfg, ffn_cfg=ffn_cfg ) ) def build_text_encoder(self, text_encoder): text_latent_dim = text_encoder['latent_dim'] num_text_layers = text_encoder.get('num_layers', 0) text_ff_size = text_encoder.get('ff_size', 2048) pretrained_model = text_encoder['pretrained_model'] text_num_heads = text_encoder.get('num_heads', 4) dropout = text_encoder.get('dropout', 0) activation = text_encoder.get('activation', 'gelu') self.use_text_proj = text_encoder.get('use_text_proj', False) if pretrained_model == 'clip': self.clip, _ = clip.load('ViT-B/32', "cpu") set_requires_grad(self.clip, False) if text_latent_dim != 512: self.text_pre_proj = nn.Linear(512, text_latent_dim) else: self.text_pre_proj = nn.Identity() else: raise NotImplementedError() if num_text_layers > 0: self.use_text_finetune = True textTransEncoderLayer = nn.TransformerEncoderLayer( d_model=text_latent_dim, nhead=text_num_heads, dim_feedforward=text_ff_size, dropout=dropout, activation=activation) self.textTransEncoder = nn.TransformerEncoder( textTransEncoderLayer, num_layers=num_text_layers) else: self.use_text_finetune = False self.text_ln = nn.LayerNorm(text_latent_dim) if self.use_text_proj: self.text_proj = nn.Sequential( nn.Linear(text_latent_dim, self.time_embed_dim) ) def encode_text(self, text, clip_feat, device): B = len(text) text = clip.tokenize(text, truncate=True).to(device) if clip_feat is None: with torch.no_grad(): x = self.clip.token_embedding(text).type(self.clip.dtype) # [batch_size, n_ctx, d_model] x = x + self.clip.positional_embedding.type(self.clip.dtype) x = x.permute(1, 0, 2) # NLD -> LND x = self.clip.transformer(x) x = self.clip.ln_final(x).type(self.clip.dtype) else: x = clip_feat.type(self.clip.dtype).to(device).permute(1, 0, 2) # T, B, D x = self.text_pre_proj(x) xf_out = self.textTransEncoder(x) xf_out = self.text_ln(xf_out) if self.use_text_proj: xf_proj = self.text_proj(xf_out[text.argmax(dim=-1), torch.arange(xf_out.shape[1])]) # B, T, D xf_out = xf_out.permute(1, 0, 2) return xf_proj, xf_out else: xf_out = xf_out.permute(1, 0, 2) return xf_out @abstractmethod def get_precompute_condition(self, **kwargs): pass @abstractmethod def forward_train(self, h, src_mask, emb, **kwargs): pass @abstractmethod def forward_test(self, h, src_mask, emb, **kwargs): pass def forward(self, motion, timesteps, motion_mask=None, **kwargs): """ motion: B, T, D """ B, T = motion.shape[0], motion.shape[1] conditions = self.get_precompute_condition(device=motion.device, **kwargs) if len(motion_mask.shape) == 2: src_mask = motion_mask.clone().unsqueeze(-1) else: src_mask = motion_mask.clone() if self.use_text_proj: emb = self.time_embed(timestep_embedding(timesteps, self.latent_dim)) + conditions['xf_proj'] else: emb = self.time_embed(timestep_embedding(timesteps, self.latent_dim)) # B, T, latent_dim h = self.joint_embed(motion) h = h + self.sequence_embedding.unsqueeze(0)[:, :T, :] if self.training: return self.forward_train(h=h, src_mask=src_mask, emb=emb, timesteps=timesteps, **conditions) else: return self.forward_test(h=h, src_mask=src_mask, emb=emb, timesteps=timesteps, **conditions)