Update app.py
Browse files
app.py
CHANGED
@@ -16,7 +16,79 @@ MAX_MAX_NEW_TOKENS = 2048
|
|
16 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
17 |
total_count=0
|
18 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
DESCRIPTION="""CODE"""
|
22 |
|
@@ -43,6 +115,7 @@ def gen(
|
|
43 |
print(total_count)
|
44 |
os.system("nvidia-smi")
|
45 |
conversation = []
|
|
|
46 |
if system_prompt:
|
47 |
conversation.append({"role": "system", "content": system_prompt})
|
48 |
for user, assistant in chat_history:
|
|
|
16 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
17 |
total_count=0
|
18 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
19 |
+
import gradio as gr
|
20 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
21 |
+
|
22 |
+
dict_map = {
|
23 |
+
"òa": "oà",
|
24 |
+
"Òa": "Oà",
|
25 |
+
"ÒA": "OÀ",
|
26 |
+
"óa": "oá",
|
27 |
+
"Óa": "Oá",
|
28 |
+
"ÓA": "OÁ",
|
29 |
+
"ỏa": "oả",
|
30 |
+
"Ỏa": "Oả",
|
31 |
+
"ỎA": "OẢ",
|
32 |
+
"õa": "oã",
|
33 |
+
"Õa": "Oã",
|
34 |
+
"ÕA": "OÃ",
|
35 |
+
"ọa": "oạ",
|
36 |
+
"Ọa": "Oạ",
|
37 |
+
"ỌA": "OẠ",
|
38 |
+
"òe": "oè",
|
39 |
+
"Òe": "Oè",
|
40 |
+
"ÒE": "OÈ",
|
41 |
+
"óe": "oé",
|
42 |
+
"Óe": "Oé",
|
43 |
+
"ÓE": "OÉ",
|
44 |
+
"ỏe": "oẻ",
|
45 |
+
"Ỏe": "Oẻ",
|
46 |
+
"ỎE": "OẺ",
|
47 |
+
"õe": "oẽ",
|
48 |
+
"Õe": "Oẽ",
|
49 |
+
"ÕE": "OẼ",
|
50 |
+
"ọe": "oẹ",
|
51 |
+
"Ọe": "Oẹ",
|
52 |
+
"ỌE": "OẸ",
|
53 |
+
"ùy": "uỳ",
|
54 |
+
"Ùy": "Uỳ",
|
55 |
+
"ÙY": "UỲ",
|
56 |
+
"úy": "uý",
|
57 |
+
"Úy": "Uý",
|
58 |
+
"ÚY": "UÝ",
|
59 |
+
"ủy": "uỷ",
|
60 |
+
"Ủy": "Uỷ",
|
61 |
+
"ỦY": "UỶ",
|
62 |
+
"ũy": "uỹ",
|
63 |
+
"Ũy": "Uỹ",
|
64 |
+
"ŨY": "UỸ",
|
65 |
+
"ụy": "uỵ",
|
66 |
+
"Ụy": "Uỵ",
|
67 |
+
"ỤY": "UỴ",
|
68 |
+
}
|
69 |
|
70 |
+
tokenizer_vi2en = AutoTokenizer.from_pretrained("vinai/vinai-translate-vi2en-v2", src_lang="vi_VN")
|
71 |
+
model_vi2en = AutoModelForSeq2SeqLM.from_pretrained("vinai/vinai-translate-vi2en-v2")
|
72 |
+
|
73 |
+
def translate_vi2en(vi_text: str) -> str:
|
74 |
+
for i, j in dict_map.items():
|
75 |
+
vi_text = vi_text.replace(i, j)
|
76 |
+
input_ids = tokenizer_vi2en(vi_text, return_tensors="pt").input_ids
|
77 |
+
output_ids = model_vi2en.generate(
|
78 |
+
input_ids,
|
79 |
+
decoder_start_token_id=tokenizer_vi2en.lang_code_to_id["en_XX"],
|
80 |
+
num_return_sequences=1,
|
81 |
+
# # With sampling
|
82 |
+
# do_sample=True,
|
83 |
+
# top_k=100,
|
84 |
+
# top_p=0.8,
|
85 |
+
# With beam search
|
86 |
+
num_beams=5,
|
87 |
+
early_stopping=True
|
88 |
+
)
|
89 |
+
en_text = tokenizer_vi2en.batch_decode(output_ids, skip_special_tokens=True)
|
90 |
+
en_text = " ".join(en_text)
|
91 |
+
return en_text
|
92 |
|
93 |
DESCRIPTION="""CODE"""
|
94 |
|
|
|
115 |
print(total_count)
|
116 |
os.system("nvidia-smi")
|
117 |
conversation = []
|
118 |
+
message = translate_vi2en(message)
|
119 |
if system_prompt:
|
120 |
conversation.append({"role": "system", "content": system_prompt})
|
121 |
for user, assistant in chat_history:
|