import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from transformers import BitsAndBytesConfig

nf4_config = BitsAndBytesConfig(
    load_in_8bit=True,
    bnb_8bit_use_double_quant=True,
    bnb_8bit_quant_type="nf8",
)
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
total_count=0
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

dict_map = {
    "òa": "oà",
    "Òa": "Oà",
    "ÒA": "OÀ",
    "óa": "oá",
    "Óa": "Oá",
    "ÓA": "OÁ",
    "ỏa": "oả",
    "Ỏa": "Oả",
    "ỎA": "OẢ",
    "õa": "oã",
    "Õa": "Oã",
    "ÕA": "OÃ",
    "ọa": "oạ",
    "Ọa": "Oạ",
    "ỌA": "OẠ",
    "òe": "oè",
    "Òe": "Oè",
    "ÒE": "OÈ",
    "óe": "oé",
    "Óe": "Oé",
    "ÓE": "OÉ",
    "ỏe": "oẻ",
    "Ỏe": "Oẻ",
    "ỎE": "OẺ",
    "õe": "oẽ",
    "Õe": "Oẽ",
    "ÕE": "OẼ",
    "ọe": "oẹ",
    "Ọe": "Oẹ",
    "ỌE": "OẸ",
    "ùy": "uỳ",
    "Ùy": "Uỳ",
    "ÙY": "UỲ",
    "úy": "uý",
    "Úy": "Uý",
    "ÚY": "UÝ",
    "ủy": "uỷ",
    "Ủy": "Uỷ",
    "ỦY": "UỶ",
    "ũy": "uỹ",
    "Ũy": "Uỹ",
    "ŨY": "UỸ",
    "ụy": "uỵ",
    "Ụy": "Uỵ",
    "ỤY": "UỴ",
    }

tokenizer_vi2en = AutoTokenizer.from_pretrained("vinai/vinai-translate-vi2en-v2", src_lang="vi_VN")
model_vi2en = AutoModelForSeq2SeqLM.from_pretrained("vinai/vinai-translate-vi2en-v2",device_map="auto")

def translate_vi2en(vi_text: str) -> str:
    for i, j in dict_map.items():
        vi_text = vi_text.replace(i, j)
    input_ids = tokenizer_vi2en(vi_text, return_tensors="pt").to("cuda").input_ids
    output_ids = model_vi2en.generate(
        input_ids,
        decoder_start_token_id=tokenizer_vi2en.lang_code_to_id["en_XX"],
        num_return_sequences=1,
        # # With sampling
        # do_sample=True,
        # top_k=100,
        # top_p=0.8,
        # With beam search
        num_beams=5,
        early_stopping=True
    )
    en_text = tokenizer_vi2en.batch_decode(output_ids, skip_special_tokens=True)
    en_text = " ".join(en_text)
    return en_text

DESCRIPTION="""CODE"""

model_id = "deepseek-ai/deepseek-coder-7b-instruct-v1.5"
model = AutoModelForCausalLM.from_pretrained(model_id,device_map="auto",torch_dtype=torch.bfloat16)
tokenizer=AutoTokenizer.from_pretrained(model_id)
tokenizer.use_defaul_system_prompt=True
os.system("nvidia-smi")

@spaces.GPU
def gen(
     message: str,
    chat_history: list[tuple[str, str]],
    system_prompt: str,
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1,
    
)->Iterator[str]:
    global total_count
    total_count += 1
    print(total_count)
    os.system("nvidia-smi")
    conversation = []
    message = translate_vi2en(message)
    if system_prompt:
        conversation.append({"role": "system", "content": system_prompt})
    for user, assistant in chat_history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=False,
        top_p=top_p,
        top_k=top_k,
        num_beams=1,
        # temperature=temperature,
        repetition_penalty=repetition_penalty,
        eos_token_id=32021
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs).replace("<|EOT|>","")


chat_interface = gr.ChatInterface(
    fn=gen,
    additional_inputs=[
        gr.Textbox(label="System prompt", lines=6),
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        # gr.Slider(
        #     label="Temperature",
        #     minimum=0,
        #     maximum=4.0,
        #     step=0.1,
        #     value=0,
        # ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.9,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1,
        ),
    ],
    stop_btn=gr.Button("Stop"),
    examples=[
        ["implement snake game using pygame"],
        ["Can you explain briefly to me what is the Python programming language?"],
        ["write a program to find the factorial of a number"],
    ],
)

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    chat_interface.render()

if __name__ == "__main__":
    demo.queue(max_size=100).launch()