Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from unsloth import FastLanguageModel | |
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally! | |
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ | |
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False. | |
model, tokenizer = FastLanguageModel.from_pretrained( | |
model_name = "minhnguyen5293/lora_model", # YOUR MODEL YOU USED FOR TRAINING | |
max_seq_length = max_seq_length, | |
dtype = dtype, | |
load_in_4bit = load_in_4bit, | |
) | |
FastLanguageModel.for_inference(model) # Enable native 2x faster inference | |
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally! | |
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ | |
load_in_4bit = True | |
model, tokenizer = FastLanguageModel.from_pretrained( | |
model_name = "lora_model", # YOUR MODEL YOU USED FOR TRAINING | |
max_seq_length = max_seq_length, | |
dtype = dtype, | |
load_in_4bit = load_in_4bit, | |
) | |
FastLanguageModel.for_inference(model) # Enable native 2x faster inference | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
from transformers import TextIteratorStreamer | |
inputs = tokenizer.apply_chat_template( | |
messages, | |
tokenize = True, | |
add_generation_prompt = True, # Must add for generation | |
return_tensors = "pt", | |
).to("cuda") | |
text_streamer = TextIteratorStreamer(tokenizer, skip_prompt = True) | |
_ = model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = 128, | |
use_cache = True, temperature = 1.5, min_p = 0.1) | |
response = "" | |
for message in text_streamer: | |
# remove <|eot_id|> | |
response += message.split("<|eot_id|>")[0] | |
yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |