feat: update app.py, add tools.py, and tons of other files
Browse files- .env.sample +7 -0
- .gitignore +5 -0
- .python-version +1 -0
- README.md +3 -2
- app.py +86 -14
- requirements.txt +14 -2
- system_prompt.txt +2 -0
- tools.py +134 -0
.env.sample
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
LANGFUSE_SECRET_KEY=
|
2 |
+
LANGFUSE_PUBLIC_KEY=
|
3 |
+
LANGFUSE_HOST=
|
4 |
+
GOOGLE_API_KEY=
|
5 |
+
TAVILY_API_KEY=
|
6 |
+
GROQ_API_KEY=
|
7 |
+
MODEL_PROVIDER= # choose from: groq, google, openai
|
.gitignore
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__
|
2 |
+
.venv
|
3 |
+
_*
|
4 |
+
*.bak
|
5 |
+
*.tmp
|
.python-version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
3.10
|
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: 🕵🏻♂️
|
4 |
colorFrom: indigo
|
5 |
colorTo: indigo
|
@@ -8,8 +8,9 @@ sdk_version: 5.25.2
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
hf_oauth: true
|
|
|
11 |
# optional, default duration is 8 hours/480 minutes. Max duration is 30 days/43200 minutes.
|
12 |
hf_oauth_expiration_minutes: 480
|
13 |
---
|
14 |
|
15 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Agent Course - Final assignment
|
3 |
emoji: 🕵🏻♂️
|
4 |
colorFrom: indigo
|
5 |
colorTo: indigo
|
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
hf_oauth: true
|
11 |
+
python_version: "3.10"
|
12 |
# optional, default duration is 8 hours/480 minutes. Max duration is 30 days/43200 minutes.
|
13 |
hf_oauth_expiration_minutes: 480
|
14 |
---
|
15 |
|
16 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,23 +1,89 @@
|
|
1 |
import os
|
2 |
-
import gradio as gr
|
3 |
import requests
|
4 |
-
import
|
|
|
|
|
5 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# (Keep Constants as is)
|
8 |
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def __call__(self, question: str) -> str:
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
23 |
"""
|
@@ -40,7 +106,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
40 |
|
41 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
42 |
try:
|
43 |
-
agent =
|
44 |
except Exception as e:
|
45 |
print(f"Error instantiating agent: {e}")
|
46 |
return f"Error initializing agent: {e}", None
|
@@ -54,6 +120,9 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
54 |
response = requests.get(questions_url, timeout=15)
|
55 |
response.raise_for_status()
|
56 |
questions_data = response.json()
|
|
|
|
|
|
|
57 |
if not questions_data:
|
58 |
print("Fetched questions list is empty.")
|
59 |
return "Fetched questions list is empty or invalid format.", None
|
@@ -73,12 +142,14 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
73 |
results_log = []
|
74 |
answers_payload = []
|
75 |
print(f"Running agent on {len(questions_data)} questions...")
|
76 |
-
for item in questions_data:
|
|
|
77 |
task_id = item.get("task_id")
|
78 |
question_text = item.get("question")
|
79 |
if not task_id or question_text is None:
|
80 |
print(f"Skipping item with missing task_id or question: {item}")
|
81 |
continue
|
|
|
82 |
try:
|
83 |
submitted_answer = agent(question_text)
|
84 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
@@ -172,6 +243,7 @@ with gr.Blocks() as demo:
|
|
172 |
)
|
173 |
|
174 |
if __name__ == "__main__":
|
|
|
175 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
176 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
177 |
space_host_startup = os.getenv("SPACE_HOST")
|
@@ -193,4 +265,4 @@ if __name__ == "__main__":
|
|
193 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
194 |
|
195 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
196 |
-
demo.launch(debug=True, share=False)
|
|
|
1 |
import os
|
|
|
2 |
import requests
|
3 |
+
from typing import Literal
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
import pandas as pd
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
from langchain_core.messages import HumanMessage, SystemMessage
|
9 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
10 |
+
from langchain_groq import ChatGroq
|
11 |
+
from langchain_openai import ChatOpenAI
|
12 |
+
from langgraph.graph import MessagesState, START, StateGraph
|
13 |
+
from langgraph.prebuilt import ToolNode, tools_condition
|
14 |
+
|
15 |
+
from tools import all_tools
|
16 |
|
17 |
# (Keep Constants as is)
|
18 |
# --- Constants ---
|
19 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
20 |
|
21 |
+
class MyAgent:
|
22 |
+
def __init__(self, provider: Literal['openai', 'google', 'groq'] = 'groq') -> None:
|
23 |
+
if provider == 'openai':
|
24 |
+
self.llm = ChatOpenAI(model='gpt-4.1-nano', temperature=0)
|
25 |
+
elif provider == 'google':
|
26 |
+
self.llm = ChatGoogleGenerativeAI(model='gemini-2.0-flash', temperature=0)
|
27 |
+
elif provider == 'groq':
|
28 |
+
self.llm = ChatGroq(model='qwen-qwq-32b', temperature=0)
|
29 |
+
else:
|
30 |
+
raise ValueError('Invalid provider. Choose "openai", "google", or "groq".')
|
31 |
+
|
32 |
+
self.tools = all_tools
|
33 |
+
self.llm_with_tools = self.llm.bind_tools(tools=self.tools)
|
34 |
+
self.agent = self.build_graph()
|
35 |
+
|
36 |
+
with open('system_prompt.txt', 'r', encoding='utf-8') as f:
|
37 |
+
self.SYSTEM_PROMPT = f.read()
|
38 |
+
|
39 |
+
if 'LANGFUSE_SECRET_KEY' in os.environ:
|
40 |
+
from langfuse.callback import CallbackHandler
|
41 |
+
self.callbacks = [
|
42 |
+
CallbackHandler(),
|
43 |
+
]
|
44 |
+
|
45 |
def __call__(self, question: str) -> str:
|
46 |
+
messages = [
|
47 |
+
SystemMessage(content=self.SYSTEM_PROMPT),
|
48 |
+
HumanMessage(content=question),
|
49 |
+
]
|
50 |
+
|
51 |
+
response = self.agent.invoke(
|
52 |
+
input={'messages': messages},
|
53 |
+
config={'callbacks': self.callbacks},
|
54 |
+
)
|
55 |
+
|
56 |
+
response_content = response['messages'][-1].content
|
57 |
+
final_answer = self.extract_final_answer(response_content)
|
58 |
+
return final_answer
|
59 |
+
|
60 |
+
def assistant(self, state: MessagesState):
|
61 |
+
return {
|
62 |
+
'messages': [self.llm_with_tools.invoke(state['messages'])],
|
63 |
+
}
|
64 |
+
|
65 |
+
def build_graph(self):
|
66 |
+
builder = StateGraph(MessagesState)
|
67 |
+
|
68 |
+
builder.add_node('assistant', self.assistant)
|
69 |
+
builder.add_node('tools', ToolNode(self.tools))
|
70 |
+
|
71 |
+
builder.add_edge(START, 'assistant')
|
72 |
+
builder.add_conditional_edges(
|
73 |
+
'assistant',
|
74 |
+
tools_condition,
|
75 |
+
)
|
76 |
+
builder.add_edge('tools', 'assistant')
|
77 |
+
compiled_graph = builder.compile()
|
78 |
+
|
79 |
+
return compiled_graph
|
80 |
+
|
81 |
+
def extract_final_answer(self, response_content: str) -> str:
|
82 |
+
start_answer_idx = response_content.find("FINAL ANSWER: ")
|
83 |
+
if start_answer_idx == -1:
|
84 |
+
return "Invalid response format. No final answer found."
|
85 |
+
final_answer = response_content[start_answer_idx + len("FINAL ANSWER: "):].strip()
|
86 |
+
return final_answer
|
87 |
|
88 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
89 |
"""
|
|
|
106 |
|
107 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
108 |
try:
|
109 |
+
agent = MyAgent(provider=os.environ.get('MODEL_PROVIDER', 'groq').lower())
|
110 |
except Exception as e:
|
111 |
print(f"Error instantiating agent: {e}")
|
112 |
return f"Error initializing agent: {e}", None
|
|
|
120 |
response = requests.get(questions_url, timeout=15)
|
121 |
response.raise_for_status()
|
122 |
questions_data = response.json()
|
123 |
+
|
124 |
+
# questions_data = questions_data[:5]
|
125 |
+
|
126 |
if not questions_data:
|
127 |
print("Fetched questions list is empty.")
|
128 |
return "Fetched questions list is empty or invalid format.", None
|
|
|
142 |
results_log = []
|
143 |
answers_payload = []
|
144 |
print(f"Running agent on {len(questions_data)} questions...")
|
145 |
+
for idx, item in enumerate(questions_data):
|
146 |
+
print(f'Running agent on question {idx + 1}/{len(questions_data)}')
|
147 |
task_id = item.get("task_id")
|
148 |
question_text = item.get("question")
|
149 |
if not task_id or question_text is None:
|
150 |
print(f"Skipping item with missing task_id or question: {item}")
|
151 |
continue
|
152 |
+
|
153 |
try:
|
154 |
submitted_answer = agent(question_text)
|
155 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
|
|
243 |
)
|
244 |
|
245 |
if __name__ == "__main__":
|
246 |
+
load_dotenv()
|
247 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
248 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
249 |
space_host_startup = os.getenv("SPACE_HOST")
|
|
|
265 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
266 |
|
267 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
268 |
+
demo.launch(debug=True, share=False)
|
requirements.txt
CHANGED
@@ -1,2 +1,14 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dotenv==0.9.9
|
2 |
+
gradio[oauth]==5.29.0
|
3 |
+
langchain-community==0.3.23
|
4 |
+
langchain-google-genai==2.1.0
|
5 |
+
langchain-groq==0.2.4
|
6 |
+
langchain-openai==0.3.16
|
7 |
+
langchain-tavily==0.1.6
|
8 |
+
langchain-unstructured==0.1.6
|
9 |
+
langfuse==2.60.3
|
10 |
+
langgraph==0.4.1
|
11 |
+
pillow==11.2.1
|
12 |
+
pytesseract==0.3.13
|
13 |
+
requests==2.32.3
|
14 |
+
wikipedia==1.4.0
|
system_prompt.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
2 |
+
Your answer should only start with "FINAL ANSWER: ", then follows with the answer.
|
tools.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytesseract
|
2 |
+
from PIL import Image
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
from langchain.tools import tool
|
5 |
+
from langchain_community.document_loaders import WikipediaLoader
|
6 |
+
from langchain_community.tools import TavilySearchResults
|
7 |
+
|
8 |
+
|
9 |
+
@tool
|
10 |
+
def multiply(a: int, b: int) -> int:
|
11 |
+
"""Multiply two numbers.
|
12 |
+
Args:
|
13 |
+
a: first int
|
14 |
+
b: second int
|
15 |
+
"""
|
16 |
+
return a * b
|
17 |
+
|
18 |
+
@tool
|
19 |
+
def add(a: int, b: int) -> int:
|
20 |
+
"""Add two numbers.
|
21 |
+
|
22 |
+
Args:
|
23 |
+
a: first int
|
24 |
+
b: second int
|
25 |
+
"""
|
26 |
+
return a + b
|
27 |
+
|
28 |
+
@tool
|
29 |
+
def subtract(a: int, b: int) -> int:
|
30 |
+
"""Subtract two numbers.
|
31 |
+
|
32 |
+
Args:
|
33 |
+
a: first int
|
34 |
+
b: second int
|
35 |
+
"""
|
36 |
+
return a - b
|
37 |
+
|
38 |
+
@tool
|
39 |
+
def divide(a: int, b: int) -> float:
|
40 |
+
"""Divide two numbers.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
a: first int
|
44 |
+
b: second int
|
45 |
+
"""
|
46 |
+
try:
|
47 |
+
return a / b
|
48 |
+
except ZeroDivisionError:
|
49 |
+
raise ValueError("Cannot divide by zero.")
|
50 |
+
|
51 |
+
@tool
|
52 |
+
def modulus(a: int, b: int) -> int:
|
53 |
+
"""Get the modulus of two numbers.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
a: first int
|
57 |
+
b: second int
|
58 |
+
"""
|
59 |
+
return a % b
|
60 |
+
|
61 |
+
@tool
|
62 |
+
def wiki_search(query: str) -> str:
|
63 |
+
"""Search Wikipedia for a query and return up to 3 results.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
query: query to search.
|
67 |
+
"""
|
68 |
+
|
69 |
+
docs = WikipediaLoader(query, load_max_docs=3).load()
|
70 |
+
results = "wiki_search results:\n\n"
|
71 |
+
results += '\n\n---\n\n'.join([
|
72 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
73 |
+
for doc in docs
|
74 |
+
])
|
75 |
+
return results
|
76 |
+
|
77 |
+
@tool
|
78 |
+
def web_search(query: str) -> str:
|
79 |
+
"""Search the web for a query and return up to 3 results.
|
80 |
+
|
81 |
+
Args:
|
82 |
+
query: query to search.
|
83 |
+
"""
|
84 |
+
docs = TavilySearchResults(max_results=3).invoke(query)
|
85 |
+
results = "web_search results:\n\n"
|
86 |
+
results += '\n\n---\n\n'.join([
|
87 |
+
f'<Document source="{doc["url"]}"/>\n{doc["content"]}\n</Document>'
|
88 |
+
for doc in docs
|
89 |
+
])
|
90 |
+
return results
|
91 |
+
|
92 |
+
@tool
|
93 |
+
def extract_text_from_image(image_path: str) -> str:
|
94 |
+
"""Extract text from a image.
|
95 |
+
|
96 |
+
Args:
|
97 |
+
image_path: path to the image
|
98 |
+
|
99 |
+
Returns:
|
100 |
+
extracted text from the image
|
101 |
+
"""
|
102 |
+
try:
|
103 |
+
image = Image.open(image_path)
|
104 |
+
|
105 |
+
text = pytesseract.image_to_string(image)
|
106 |
+
return f'Extracted text: {text}'
|
107 |
+
except Exception as err:
|
108 |
+
return f'Error extracting text from the image {image_path}: {str(err)}'
|
109 |
+
|
110 |
+
all_tools = [
|
111 |
+
multiply,
|
112 |
+
add,
|
113 |
+
subtract,
|
114 |
+
divide,
|
115 |
+
modulus,
|
116 |
+
wiki_search,
|
117 |
+
web_search,
|
118 |
+
extract_text_from_image,
|
119 |
+
]
|
120 |
+
|
121 |
+
def main():
|
122 |
+
load_dotenv()
|
123 |
+
|
124 |
+
results = wiki_search('What is Dijkstra algorithm?')
|
125 |
+
print(results)
|
126 |
+
print('-'*80)
|
127 |
+
|
128 |
+
results = web_search('What is TypedDict in python')
|
129 |
+
print(results)
|
130 |
+
print('-'*80)
|
131 |
+
|
132 |
+
|
133 |
+
if __name__ == '__main__':
|
134 |
+
main()
|