Spaces:
Sleeping
Sleeping
File size: 2,948 Bytes
d428744 7388360 c7b46d4 7388360 d428744 c5bb903 d428744 4fef98a 7388360 4fef98a 7388360 c7b46d4 4fef98a 7388360 c7b46d4 4fef98a c7b46d4 d428744 c5bb903 d428744 a102565 d428744 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
import os
from typing import Iterator
from dotenv import load_dotenv
from fastapi import APIRouter, Depends, Request
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from libs.header_api_auth import get_api_key
from pydantic import BaseModel
from fastapi.responses import StreamingResponse
from langchain_ollama import ChatOllama, OllamaLLM
from libs.transformer.get_chat_gradio import get_chat_gradio
from libs.transformer.get_chat_transformer import get_chat_transformers
load_dotenv()
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN", )
os.environ["HUGGINGFACEHUB_API_TOKEN"] = HUGGINGFACEHUB_API_TOKEN
router = APIRouter(prefix="/get-chat-response", tags=["chat"])
class ChatInputForm(BaseModel):
textInput: str
repo_id: str
prompt: str
@router.post("/")
async def get_chat_respone(body: ChatInputForm, api_key: str = Depends(get_api_key)):
prompt = get_prompt(body.prompt)
try:
llm = OllamaLLM(
model=body.repo_id,
temperature=0.2,
# huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN,
)
messages = [
("system", prompt),
("human", body.textInput)
]
messages = [
{"role": "system", "content": prompt},
{"role": "user", "content": body.textInput},
]
response = llm.stream(messages)
# response = get_chat_gradio(body.textInput)
# response = get_chat_transformers(messages)
print(response)
return StreamingResponse(get_response(response), media_type='text/event-stream')
except Exception:
return {"success": False, "status": Exception}
def get_response(response: Iterator[str]):
for chunk in response:
yield chunk
checkWritting = """You'll be provided with a text. Convert the text to standard English.
---------------
IMPORTANT:
- If the text is empty, do nothing.
- If the given text maintains grammatical accuracy, no suggestions are needed.
- If the given text is empty, do nothing.
- If the given text contains any errors in grammatical accuracy, provide the corrected text.
"""
template = """You are a helpful assistant. Do whatever user require. Response in markdown format."""
baiGiang = """Provide the given phrase in English. Provide the correct and popularly used English phrase along with its American IPA pronunciation and a brief explanation for it. Use the correct English phrase to create 4 example sentences along with the example IPA and brief meanings. Finally, suggest 4 similar English phrases with the correct English version, along with American IPA and their brief meanings.
Provie your response in markdown format"""
def get_prompt(prompt: str):
prompts = {
'template' : template,
'checkWritting': checkWritting,
'baiGiang': baiGiang
}
return prompts.get('template', template)
|