Spaces:
Sleeping
Sleeping
minor fix
Browse files
libs/transformer/get_transcript.py
CHANGED
@@ -2,30 +2,28 @@ import torch
|
|
2 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
3 |
|
4 |
|
5 |
-
|
6 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
7 |
-
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
result = pipe("https://static.langkingdom.com/user_playlist_practice_videos/2114103294b5c15605fd59773e948e58.mp3")
|
31 |
-
print(result)
|
|
|
2 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
3 |
|
4 |
|
5 |
+
def get_transcript_gpu(url: str, model_id: str):
|
6 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
7 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
8 |
+
|
9 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
10 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
11 |
+
)
|
12 |
+
model.to(device)
|
13 |
+
|
14 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
15 |
+
|
16 |
+
pipe = pipeline(
|
17 |
+
"automatic-speech-recognition",
|
18 |
+
model=model,
|
19 |
+
tokenizer=processor.tokenizer,
|
20 |
+
feature_extractor=processor.feature_extractor,
|
21 |
+
max_new_tokens=128,
|
22 |
+
torch_dtype=torch_dtype,
|
23 |
+
device=device,
|
24 |
+
return_timestamps=True
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
result = pipe(url)
|
29 |
+
return result.get("text"), result.get("chunks")
|
|
|
|
routers/get_transcript_transformer.py
CHANGED
@@ -1,6 +1,9 @@
|
|
|
|
1 |
import time
|
2 |
from fastapi import APIRouter, Depends, HTTPException, status
|
3 |
|
|
|
|
|
4 |
from libs.transformer.get_transcript_2 import get_transcribe_transformers
|
5 |
|
6 |
from libs.header_api_auth import get_api_key
|
@@ -9,16 +12,30 @@ from libs.header_api_auth import get_api_key
|
|
9 |
router = APIRouter(prefix="/get-transcript-transformer", tags=["transcript"])
|
10 |
|
11 |
@router.get("/")
|
12 |
-
def get_transcript(audio_path: str, api_key: str = Depends(get_api_key)):
|
13 |
st = time.time()
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
try:
|
16 |
-
text, chunks =
|
17 |
except Exception as error:
|
18 |
raise HTTPException(status_code=status.HTTP_403_FORBIDDEN, detail=f"error>>>: {error}")
|
|
|
|
|
|
|
19 |
|
20 |
listSentences = []
|
21 |
|
|
|
|
|
22 |
for chunk in chunks:
|
23 |
listSentences.append({
|
24 |
"start_time": chunk.get("timestamp")[0],
|
|
|
1 |
+
import os
|
2 |
import time
|
3 |
from fastapi import APIRouter, Depends, HTTPException, status
|
4 |
|
5 |
+
from libs.convert_to_audio import convert_to_audio
|
6 |
+
from libs.transformer.get_transcript import get_transcript_gpu
|
7 |
from libs.transformer.get_transcript_2 import get_transcribe_transformers
|
8 |
|
9 |
from libs.header_api_auth import get_api_key
|
|
|
12 |
router = APIRouter(prefix="/get-transcript-transformer", tags=["transcript"])
|
13 |
|
14 |
@router.get("/")
|
15 |
+
def get_transcript(audio_path: str, model_size: str = "distil-whisper/distil-small.en", api_key: str = Depends(get_api_key)):
|
16 |
st = time.time()
|
17 |
|
18 |
+
output_audio_folder = f"./cached/audio"
|
19 |
+
|
20 |
+
if not os.path.exists(output_audio_folder):
|
21 |
+
os.makedirs(output_audio_folder)
|
22 |
+
|
23 |
+
output_file = f"{output_audio_folder}/{audio_path.split('/')[-1].split(".")[0]}.mp3"
|
24 |
+
|
25 |
+
convert_to_audio(audio_path.strip(), output_file)
|
26 |
+
|
27 |
try:
|
28 |
+
text, chunks = get_transcript_gpu(output_file, model_size)
|
29 |
except Exception as error:
|
30 |
raise HTTPException(status_code=status.HTTP_403_FORBIDDEN, detail=f"error>>>: {error}")
|
31 |
+
finally:
|
32 |
+
if os.path.exists(output_file):
|
33 |
+
os.remove(output_file)
|
34 |
|
35 |
listSentences = []
|
36 |
|
37 |
+
print(chunks)
|
38 |
+
|
39 |
for chunk in chunks:
|
40 |
listSentences.append({
|
41 |
"start_time": chunk.get("timestamp")[0],
|