File size: 11,354 Bytes
4d1ebf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05187ec
 
 
 
 
 
 
4d1ebf3
 
05187ec
4d1ebf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05187ec
 
 
 
 
 
 
 
 
 
 
 
 
4d1ebf3
05187ec
 
 
 
4d1ebf3
05187ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d1ebf3
05187ec
 
 
 
4d1ebf3
05187ec
4d1ebf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05187ec
 
 
 
 
4d1ebf3
05187ec
 
 
 
 
 
 
4d1ebf3
05187ec
 
 
 
 
4d1ebf3
05187ec
 
 
 
 
4d1ebf3
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import time
import torch
import cv2
from PIL import Image, ImageDraw, ImageOps
import numpy as np
from typing import Union
from segment_anything import sam_model_registry, SamPredictor, SamAutomaticMaskGenerator
import matplotlib.pyplot as plt
import PIL
from .mask_painter import mask_painter as mask_painter2
from .base_segmenter import BaseSegmenter
from .painter import mask_painter, point_painter
import os
import requests
import sys 


mask_color = 3
mask_alpha = 0.7
contour_color = 1
contour_width = 5
point_color_ne = 8
point_color_ps = 50
point_alpha = 0.9
point_radius = 15
contour_color = 2
contour_width = 5


class SamControler():
    def __init__(self, SAM_checkpoint, model_type, device):
        '''
        initialize sam controler
        '''

    
        self.sam_controler = BaseSegmenter(SAM_checkpoint, model_type, device)
        
    
    # def seg_again(self, image: np.ndarray):
    #     '''
    #     it is used when interact in video
    #     '''
    #     self.sam_controler.reset_image()
    #     self.sam_controler.set_image(image)
    #     return 
    
    
    def first_frame_click(self, image: np.ndarray, points:np.ndarray, labels: np.ndarray, multimask=True,mask_color=3):
        '''
        it is used in first frame in video
        return: mask, logit, painted image(mask+point)
        '''
        # self.sam_controler.set_image(image)
        origal_image = self.sam_controler.orignal_image
        neg_flag = labels[-1]
        if neg_flag==1:
            #find neg
            prompts = {
                'point_coords': points,
                'point_labels': labels,
            }
            masks, scores, logits = self.sam_controler.predict(prompts, 'point', multimask)
            mask, logit = masks[np.argmax(scores)], logits[np.argmax(scores), :, :]
            prompts = {
                'point_coords': points,
                'point_labels': labels,
                'mask_input': logit[None, :, :]
            }
            masks, scores, logits = self.sam_controler.predict(prompts, 'both', multimask)
            mask, logit = masks[np.argmax(scores)], logits[np.argmax(scores), :, :]
        else:
           #find positive
            prompts = {
                'point_coords': points,
                'point_labels': labels,
            }
            masks, scores, logits = self.sam_controler.predict(prompts, 'point', multimask)
            mask, logit = masks[np.argmax(scores)], logits[np.argmax(scores), :, :]
            
        
        assert len(points)==len(labels)
        
        painted_image = mask_painter(image, mask.astype('uint8'), mask_color, mask_alpha, contour_color, contour_width)
        painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels>0)],axis = 1), point_color_ne, point_alpha, point_radius, contour_color, contour_width)
        painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels<1)],axis = 1), point_color_ps, point_alpha, point_radius, contour_color, contour_width)
        painted_image = Image.fromarray(painted_image)
        
        return mask, logit, painted_image
    
    # def interact_loop(self, image:np.ndarray, same: bool, points:np.ndarray, labels: np.ndarray, logits: np.ndarray=None, multimask=True):
    #     origal_image = self.sam_controler.orignal_image
    #     if same: 
    #         '''
    #         true; loop in the same image
    #         '''
    #         prompts = {
    #             'point_coords': points,
    #             'point_labels': labels,
    #             'mask_input': logits[None, :, :]
    #         }
    #         masks, scores, logits = self.sam_controler.predict(prompts, 'both', multimask)
    #         mask, logit = masks[np.argmax(scores)], logits[np.argmax(scores), :, :]
            
    #         painted_image = mask_painter(image, mask.astype('uint8'), mask_color, mask_alpha, contour_color, contour_width)
    #         painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels>0)],axis = 1), point_color_ne, point_alpha, point_radius, contour_color, contour_width)
    #         painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels<1)],axis = 1), point_color_ps, point_alpha, point_radius, contour_color, contour_width)
    #         painted_image = Image.fromarray(painted_image)

    #         return mask, logit, painted_image
    #     else:
    #         '''
    #         loop in the different image, interact in the video 
    #         '''
    #         if image is None:
    #             raise('Image error')
    #         else:
    #             self.seg_again(image)
    #         prompts = {
    #             'point_coords': points,
    #             'point_labels': labels,
    #         }
    #         masks, scores, logits = self.sam_controler.predict(prompts, 'point', multimask)
    #         mask, logit = masks[np.argmax(scores)], logits[np.argmax(scores), :, :]
            
    #         painted_image = mask_painter(image, mask.astype('uint8'), mask_color, mask_alpha, contour_color, contour_width)
    #         painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels>0)],axis = 1), point_color_ne, point_alpha, point_radius, contour_color, contour_width)
    #         painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels<1)],axis = 1), point_color_ps, point_alpha, point_radius, contour_color, contour_width)
    #         painted_image = Image.fromarray(painted_image)

    #         return mask, logit, painted_image
        
    




# def initialize():
#     '''
#     initialize sam controler
#     '''
#     checkpoint_url = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth"
#     folder = "segmenter"
#     SAM_checkpoint= './checkpoints/sam_vit_h_4b8939.pth'
#     download_checkpoint(checkpoint_url, folder, SAM_checkpoint)
    

#     model_type = 'vit_h'
#     device = "cuda:0"
#     sam_controler = BaseSegmenter(SAM_checkpoint, model_type, device)
#     return sam_controler


# def seg_again(sam_controler, image: np.ndarray):
#     '''
#     it is used when interact in video
#     '''
#     sam_controler.reset_image()
#     sam_controler.set_image(image)
#     return
    

# def first_frame_click(sam_controler, image: np.ndarray, points:np.ndarray, labels: np.ndarray, multimask=True):
#     '''
#     it is used in first frame in video
#     return: mask, logit, painted image(mask+point)
#     '''
#     sam_controler.set_image(image) 
#     prompts = {
#         'point_coords': points,
#         'point_labels': labels,
#     }
#     masks, scores, logits = sam_controler.predict(prompts, 'point', multimask)
#     mask, logit = masks[np.argmax(scores)], logits[np.argmax(scores), :, :]
    
#     assert len(points)==len(labels)
    
#     painted_image = mask_painter(image, mask.astype('uint8'), mask_color, mask_alpha, contour_color, contour_width)
#     painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels>0)],axis = 1), point_color_ne, point_alpha, point_radius, contour_color, contour_width)
#     painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels<1)],axis = 1), point_color_ps, point_alpha, point_radius, contour_color, contour_width)
#     painted_image = Image.fromarray(painted_image)
    
#     return mask, logit, painted_image

# def interact_loop(sam_controler, image:np.ndarray, same: bool, points:np.ndarray, labels: np.ndarray, logits: np.ndarray=None, multimask=True):
#     if same: 
#         '''
#         true; loop in the same image
#         '''
#         prompts = {
#             'point_coords': points,
#             'point_labels': labels,
#             'mask_input': logits[None, :, :]
#         }
#         masks, scores, logits = sam_controler.predict(prompts, 'both', multimask)
#         mask, logit = masks[np.argmax(scores)], logits[np.argmax(scores), :, :]
        
#         painted_image = mask_painter(image, mask.astype('uint8'), mask_color, mask_alpha, contour_color, contour_width)
#         painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels>0)],axis = 1), point_color_ne, point_alpha, point_radius, contour_color, contour_width)
#         painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels<1)],axis = 1), point_color_ps, point_alpha, point_radius, contour_color, contour_width)
#         painted_image = Image.fromarray(painted_image)

#         return mask, logit, painted_image
#     else:
#         '''
#         loop in the different image, interact in the video 
#         '''
#         if image is None:
#             raise('Image error')
#         else:
#             seg_again(sam_controler, image)
#         prompts = {
#             'point_coords': points,
#             'point_labels': labels,
#         }
#         masks, scores, logits = sam_controler.predict(prompts, 'point', multimask)
#         mask, logit = masks[np.argmax(scores)], logits[np.argmax(scores), :, :]
        
#         painted_image = mask_painter(image, mask.astype('uint8'), mask_color, mask_alpha, contour_color, contour_width)
#         painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels>0)],axis = 1), point_color_ne, point_alpha, point_radius, contour_color, contour_width)
#         painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels<1)],axis = 1), point_color_ps, point_alpha, point_radius, contour_color, contour_width)
#         painted_image = Image.fromarray(painted_image)

#         return mask, logit, painted_image
        
    


# if __name__ == "__main__":
#     points = np.array([[500, 375], [1125, 625]])
#     labels = np.array([1, 1])
#     image = cv2.imread('/hhd3/gaoshang/truck.jpg')
#     image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    
#     sam_controler = initialize()
#     mask, logit, painted_image_full = first_frame_click(sam_controler,image, points, labels, multimask=True)
#     painted_image = mask_painter2(image, mask.astype('uint8'), background_alpha=0.8)
#     painted_image = cv2.cvtColor(painted_image, cv2.COLOR_RGB2BGR)  # numpy array (h, w, 3)
#     cv2.imwrite('/hhd3/gaoshang/truck_point.jpg', painted_image)
#     cv2.imwrite('/hhd3/gaoshang/truck_change.jpg', image)
#     painted_image_full.save('/hhd3/gaoshang/truck_point_full.jpg')
    
#     mask, logit, painted_image_full = interact_loop(sam_controler,image,True, points, np.array([1, 0]), logit, multimask=True)
#     painted_image = mask_painter2(image, mask.astype('uint8'), background_alpha=0.8)
#     painted_image = cv2.cvtColor(painted_image, cv2.COLOR_RGB2BGR)  # numpy array (h, w, 3)
#     cv2.imwrite('/hhd3/gaoshang/truck_same.jpg', painted_image)
#     painted_image_full.save('/hhd3/gaoshang/truck_same_full.jpg')
    
#     mask, logit, painted_image_full = interact_loop(sam_controler,image, False, points, labels, multimask=True)
#     painted_image = mask_painter2(image, mask.astype('uint8'), background_alpha=0.8)
#     painted_image = cv2.cvtColor(painted_image, cv2.COLOR_RGB2BGR)  # numpy array (h, w, 3)
#     cv2.imwrite('/hhd3/gaoshang/truck_diff.jpg', painted_image)
#     painted_image_full.save('/hhd3/gaoshang/truck_diff_full.jpg')