File size: 4,788 Bytes
4d1ebf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
"""
resnet.py - A modified ResNet structure
We append extra channels to the first conv by some network surgery
"""

from collections import OrderedDict
import math

import torch
import torch.nn as nn
from torch.utils import model_zoo


def load_weights_add_extra_dim(target, source_state, extra_dim=1):
	new_dict = OrderedDict()

	for k1, v1 in target.state_dict().items():
		if not 'num_batches_tracked' in k1:
			if k1 in source_state:
				tar_v = source_state[k1]

				if v1.shape != tar_v.shape:
					# Init the new segmentation channel with zeros
					# print(v1.shape, tar_v.shape)
					c, _, w, h = v1.shape
					pads = torch.zeros((c,extra_dim,w,h), device=tar_v.device)
					nn.init.orthogonal_(pads)
					tar_v = torch.cat([tar_v, pads], 1)

				new_dict[k1] = tar_v

	target.load_state_dict(new_dict)


model_urls = {
	'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
	'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
}


def conv3x3(in_planes, out_planes, stride=1, dilation=1):
	return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
					 padding=dilation, dilation=dilation, bias=False)


class BasicBlock(nn.Module):
	expansion = 1

	def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=1):
		super(BasicBlock, self).__init__()
		self.conv1 = conv3x3(inplanes, planes, stride=stride, dilation=dilation)
		self.bn1 = nn.BatchNorm2d(planes)
		self.relu = nn.ReLU(inplace=True)
		self.conv2 = conv3x3(planes, planes, stride=1, dilation=dilation)
		self.bn2 = nn.BatchNorm2d(planes)
		self.downsample = downsample
		self.stride = stride

	def forward(self, x):
		residual = x

		out = self.conv1(x)
		out = self.bn1(out)
		out = self.relu(out)

		out = self.conv2(out)
		out = self.bn2(out)

		if self.downsample is not None:
			residual = self.downsample(x)

		out += residual
		out = self.relu(out)

		return out


class Bottleneck(nn.Module):
	expansion = 4

	def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=1):
		super(Bottleneck, self).__init__()
		self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
		self.bn1 = nn.BatchNorm2d(planes)
		self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, dilation=dilation,
							   padding=dilation, bias=False)
		self.bn2 = nn.BatchNorm2d(planes)
		self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
		self.bn3 = nn.BatchNorm2d(planes * 4)
		self.relu = nn.ReLU(inplace=True)
		self.downsample = downsample
		self.stride = stride

	def forward(self, x):
		residual = x

		out = self.conv1(x)
		out = self.bn1(out)
		out = self.relu(out)

		out = self.conv2(out)
		out = self.bn2(out)
		out = self.relu(out)

		out = self.conv3(out)
		out = self.bn3(out)

		if self.downsample is not None:
			residual = self.downsample(x)

		out += residual
		out = self.relu(out)

		return out


class ResNet(nn.Module):
	def __init__(self, block, layers=(3, 4, 23, 3), extra_dim=0):
		self.inplanes = 64
		super(ResNet, self).__init__()
		self.conv1 = nn.Conv2d(3+extra_dim, 64, kernel_size=7, stride=2, padding=3, bias=False)
		self.bn1 = nn.BatchNorm2d(64)
		self.relu = nn.ReLU(inplace=True)
		self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
		self.layer1 = self._make_layer(block, 64, layers[0])
		self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
		self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
		self.layer4 = self._make_layer(block, 512, layers[3], stride=2)

		for m in self.modules():
			if isinstance(m, nn.Conv2d):
				n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
				m.weight.data.normal_(0, math.sqrt(2. / n))
			elif isinstance(m, nn.BatchNorm2d):
				m.weight.data.fill_(1)
				m.bias.data.zero_()

	def _make_layer(self, block, planes, blocks, stride=1, dilation=1):
		downsample = None
		if stride != 1 or self.inplanes != planes * block.expansion:
			downsample = nn.Sequential(
				nn.Conv2d(self.inplanes, planes * block.expansion,
						  kernel_size=1, stride=stride, bias=False),
				nn.BatchNorm2d(planes * block.expansion),
			)

		layers = [block(self.inplanes, planes, stride, downsample)]
		self.inplanes = planes * block.expansion
		for i in range(1, blocks):
			layers.append(block(self.inplanes, planes, dilation=dilation))

		return nn.Sequential(*layers)

def resnet18(pretrained=True, extra_dim=0):
	model = ResNet(BasicBlock, [2, 2, 2, 2], extra_dim)
	if pretrained:
		load_weights_add_extra_dim(model, model_zoo.load_url(model_urls['resnet18']), extra_dim)
	return model

def resnet50(pretrained=True, extra_dim=0):
	model = ResNet(Bottleneck, [3, 4, 6, 3], extra_dim)
	if pretrained:
		load_weights_add_extra_dim(model, model_zoo.load_url(model_urls['resnet50']), extra_dim)
	return model