Spaces:
Runtime error
Runtime error
File size: 11,354 Bytes
4d1ebf3 05187ec 4d1ebf3 05187ec 4d1ebf3 05187ec 4d1ebf3 05187ec 4d1ebf3 05187ec 4d1ebf3 05187ec 4d1ebf3 05187ec 4d1ebf3 05187ec 4d1ebf3 05187ec 4d1ebf3 05187ec 4d1ebf3 05187ec 4d1ebf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import time
import torch
import cv2
from PIL import Image, ImageDraw, ImageOps
import numpy as np
from typing import Union
from segment_anything import sam_model_registry, SamPredictor, SamAutomaticMaskGenerator
import matplotlib.pyplot as plt
import PIL
from .mask_painter import mask_painter as mask_painter2
from .base_segmenter import BaseSegmenter
from .painter import mask_painter, point_painter
import os
import requests
import sys
mask_color = 3
mask_alpha = 0.7
contour_color = 1
contour_width = 5
point_color_ne = 8
point_color_ps = 50
point_alpha = 0.9
point_radius = 15
contour_color = 2
contour_width = 5
class SamControler():
def __init__(self, SAM_checkpoint, model_type, device):
'''
initialize sam controler
'''
self.sam_controler = BaseSegmenter(SAM_checkpoint, model_type, device)
# def seg_again(self, image: np.ndarray):
# '''
# it is used when interact in video
# '''
# self.sam_controler.reset_image()
# self.sam_controler.set_image(image)
# return
def first_frame_click(self, image: np.ndarray, points:np.ndarray, labels: np.ndarray, multimask=True,mask_color=3):
'''
it is used in first frame in video
return: mask, logit, painted image(mask+point)
'''
# self.sam_controler.set_image(image)
origal_image = self.sam_controler.orignal_image
neg_flag = labels[-1]
if neg_flag==1:
#find neg
prompts = {
'point_coords': points,
'point_labels': labels,
}
masks, scores, logits = self.sam_controler.predict(prompts, 'point', multimask)
mask, logit = masks[np.argmax(scores)], logits[np.argmax(scores), :, :]
prompts = {
'point_coords': points,
'point_labels': labels,
'mask_input': logit[None, :, :]
}
masks, scores, logits = self.sam_controler.predict(prompts, 'both', multimask)
mask, logit = masks[np.argmax(scores)], logits[np.argmax(scores), :, :]
else:
#find positive
prompts = {
'point_coords': points,
'point_labels': labels,
}
masks, scores, logits = self.sam_controler.predict(prompts, 'point', multimask)
mask, logit = masks[np.argmax(scores)], logits[np.argmax(scores), :, :]
assert len(points)==len(labels)
painted_image = mask_painter(image, mask.astype('uint8'), mask_color, mask_alpha, contour_color, contour_width)
painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels>0)],axis = 1), point_color_ne, point_alpha, point_radius, contour_color, contour_width)
painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels<1)],axis = 1), point_color_ps, point_alpha, point_radius, contour_color, contour_width)
painted_image = Image.fromarray(painted_image)
return mask, logit, painted_image
# def interact_loop(self, image:np.ndarray, same: bool, points:np.ndarray, labels: np.ndarray, logits: np.ndarray=None, multimask=True):
# origal_image = self.sam_controler.orignal_image
# if same:
# '''
# true; loop in the same image
# '''
# prompts = {
# 'point_coords': points,
# 'point_labels': labels,
# 'mask_input': logits[None, :, :]
# }
# masks, scores, logits = self.sam_controler.predict(prompts, 'both', multimask)
# mask, logit = masks[np.argmax(scores)], logits[np.argmax(scores), :, :]
# painted_image = mask_painter(image, mask.astype('uint8'), mask_color, mask_alpha, contour_color, contour_width)
# painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels>0)],axis = 1), point_color_ne, point_alpha, point_radius, contour_color, contour_width)
# painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels<1)],axis = 1), point_color_ps, point_alpha, point_radius, contour_color, contour_width)
# painted_image = Image.fromarray(painted_image)
# return mask, logit, painted_image
# else:
# '''
# loop in the different image, interact in the video
# '''
# if image is None:
# raise('Image error')
# else:
# self.seg_again(image)
# prompts = {
# 'point_coords': points,
# 'point_labels': labels,
# }
# masks, scores, logits = self.sam_controler.predict(prompts, 'point', multimask)
# mask, logit = masks[np.argmax(scores)], logits[np.argmax(scores), :, :]
# painted_image = mask_painter(image, mask.astype('uint8'), mask_color, mask_alpha, contour_color, contour_width)
# painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels>0)],axis = 1), point_color_ne, point_alpha, point_radius, contour_color, contour_width)
# painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels<1)],axis = 1), point_color_ps, point_alpha, point_radius, contour_color, contour_width)
# painted_image = Image.fromarray(painted_image)
# return mask, logit, painted_image
# def initialize():
# '''
# initialize sam controler
# '''
# checkpoint_url = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth"
# folder = "segmenter"
# SAM_checkpoint= './checkpoints/sam_vit_h_4b8939.pth'
# download_checkpoint(checkpoint_url, folder, SAM_checkpoint)
# model_type = 'vit_h'
# device = "cuda:0"
# sam_controler = BaseSegmenter(SAM_checkpoint, model_type, device)
# return sam_controler
# def seg_again(sam_controler, image: np.ndarray):
# '''
# it is used when interact in video
# '''
# sam_controler.reset_image()
# sam_controler.set_image(image)
# return
# def first_frame_click(sam_controler, image: np.ndarray, points:np.ndarray, labels: np.ndarray, multimask=True):
# '''
# it is used in first frame in video
# return: mask, logit, painted image(mask+point)
# '''
# sam_controler.set_image(image)
# prompts = {
# 'point_coords': points,
# 'point_labels': labels,
# }
# masks, scores, logits = sam_controler.predict(prompts, 'point', multimask)
# mask, logit = masks[np.argmax(scores)], logits[np.argmax(scores), :, :]
# assert len(points)==len(labels)
# painted_image = mask_painter(image, mask.astype('uint8'), mask_color, mask_alpha, contour_color, contour_width)
# painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels>0)],axis = 1), point_color_ne, point_alpha, point_radius, contour_color, contour_width)
# painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels<1)],axis = 1), point_color_ps, point_alpha, point_radius, contour_color, contour_width)
# painted_image = Image.fromarray(painted_image)
# return mask, logit, painted_image
# def interact_loop(sam_controler, image:np.ndarray, same: bool, points:np.ndarray, labels: np.ndarray, logits: np.ndarray=None, multimask=True):
# if same:
# '''
# true; loop in the same image
# '''
# prompts = {
# 'point_coords': points,
# 'point_labels': labels,
# 'mask_input': logits[None, :, :]
# }
# masks, scores, logits = sam_controler.predict(prompts, 'both', multimask)
# mask, logit = masks[np.argmax(scores)], logits[np.argmax(scores), :, :]
# painted_image = mask_painter(image, mask.astype('uint8'), mask_color, mask_alpha, contour_color, contour_width)
# painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels>0)],axis = 1), point_color_ne, point_alpha, point_radius, contour_color, contour_width)
# painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels<1)],axis = 1), point_color_ps, point_alpha, point_radius, contour_color, contour_width)
# painted_image = Image.fromarray(painted_image)
# return mask, logit, painted_image
# else:
# '''
# loop in the different image, interact in the video
# '''
# if image is None:
# raise('Image error')
# else:
# seg_again(sam_controler, image)
# prompts = {
# 'point_coords': points,
# 'point_labels': labels,
# }
# masks, scores, logits = sam_controler.predict(prompts, 'point', multimask)
# mask, logit = masks[np.argmax(scores)], logits[np.argmax(scores), :, :]
# painted_image = mask_painter(image, mask.astype('uint8'), mask_color, mask_alpha, contour_color, contour_width)
# painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels>0)],axis = 1), point_color_ne, point_alpha, point_radius, contour_color, contour_width)
# painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels<1)],axis = 1), point_color_ps, point_alpha, point_radius, contour_color, contour_width)
# painted_image = Image.fromarray(painted_image)
# return mask, logit, painted_image
# if __name__ == "__main__":
# points = np.array([[500, 375], [1125, 625]])
# labels = np.array([1, 1])
# image = cv2.imread('/hhd3/gaoshang/truck.jpg')
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# sam_controler = initialize()
# mask, logit, painted_image_full = first_frame_click(sam_controler,image, points, labels, multimask=True)
# painted_image = mask_painter2(image, mask.astype('uint8'), background_alpha=0.8)
# painted_image = cv2.cvtColor(painted_image, cv2.COLOR_RGB2BGR) # numpy array (h, w, 3)
# cv2.imwrite('/hhd3/gaoshang/truck_point.jpg', painted_image)
# cv2.imwrite('/hhd3/gaoshang/truck_change.jpg', image)
# painted_image_full.save('/hhd3/gaoshang/truck_point_full.jpg')
# mask, logit, painted_image_full = interact_loop(sam_controler,image,True, points, np.array([1, 0]), logit, multimask=True)
# painted_image = mask_painter2(image, mask.astype('uint8'), background_alpha=0.8)
# painted_image = cv2.cvtColor(painted_image, cv2.COLOR_RGB2BGR) # numpy array (h, w, 3)
# cv2.imwrite('/hhd3/gaoshang/truck_same.jpg', painted_image)
# painted_image_full.save('/hhd3/gaoshang/truck_same_full.jpg')
# mask, logit, painted_image_full = interact_loop(sam_controler,image, False, points, labels, multimask=True)
# painted_image = mask_painter2(image, mask.astype('uint8'), background_alpha=0.8)
# painted_image = cv2.cvtColor(painted_image, cv2.COLOR_RGB2BGR) # numpy array (h, w, 3)
# cv2.imwrite('/hhd3/gaoshang/truck_diff.jpg', painted_image)
# painted_image_full.save('/hhd3/gaoshang/truck_diff_full.jpg')
|