File size: 10,519 Bytes
4d1ebf3
 
 
 
 
 
 
 
 
 
 
bb879e5
4d1ebf3
bb879e5
 
4d1ebf3
 
 
bb879e5
4d1ebf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05187ec
4d1ebf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05187ec
 
 
 
 
 
 
4d1ebf3
 
05187ec
 
 
 
bb879e5
 
05187ec
4d1ebf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb879e5
 
 
 
 
 
 
 
 
4d1ebf3
bb879e5
4d1ebf3
 
 
 
 
 
bb879e5
4d1ebf3
bb879e5
4d1ebf3
 
bb879e5
 
 
 
 
4d1ebf3
bb879e5
 
 
 
4d1ebf3
bb879e5
 
 
 
4d1ebf3
 
bb879e5
 
4d1ebf3
bb879e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05187ec
 
 
 
 
 
 
 
 
 
 
 
 
4d1ebf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# import for debugging
import os
import glob
import numpy as np
from PIL import Image
# import for base_tracker
import torch
import yaml
import torch.nn.functional as F
from model.network import XMem
from inference.inference_core import InferenceCore
from tracker.util.mask_mapper import MaskMapper
from torchvision import transforms
from tracker.util.range_transform import im_normalization

from tools.painter import mask_painter
from tools.base_segmenter import BaseSegmenter
from torchvision.transforms import Resize
import progressbar


class BaseTracker:
    def __init__(self, xmem_checkpoint, device, sam_model=None, model_type=None) -> None:
        """
        device: model device
        xmem_checkpoint: checkpoint of XMem model
        """
        # load configurations
        with open("tracker/config/config.yaml", 'r') as stream: 
            config = yaml.safe_load(stream) 
        # initialise XMem
        network = XMem(config, xmem_checkpoint).to(device).eval()
        # initialise IncerenceCore
        self.tracker = InferenceCore(network, config)
        # data transformation
        self.im_transform = transforms.Compose([
            transforms.ToTensor(),
            im_normalization,
        ])
        self.device = device
        
        # changable properties
        self.mapper = MaskMapper()
        self.initialised = False

        # # SAM-based refinement
        # self.sam_model = sam_model
        # self.resizer = Resize([256, 256])

    @torch.no_grad()
    def resize_mask(self, mask):
        # mask transform is applied AFTER mapper, so we need to post-process it in eval.py
        h, w = mask.shape[-2:]
        min_hw = min(h, w)
        return F.interpolate(mask, (int(h/min_hw*self.size), int(w/min_hw*self.size)), 
                    mode='nearest')

    @torch.no_grad()
    def track(self, frame, first_frame_annotation=None):
        """
        Input: 
        frames: numpy arrays (H, W, 3)
        logit: numpy array (H, W), logit

        Output:
        mask: numpy arrays (H, W)
        logit: numpy arrays, probability map (H, W)
        painted_image: numpy array (H, W, 3)
        """

        if first_frame_annotation is not None:   # first frame mask
            # initialisation
            mask, labels = self.mapper.convert_mask(first_frame_annotation)
            mask = torch.Tensor(mask).to(self.device)
            self.tracker.set_all_labels(list(self.mapper.remappings.values()))
        else:
            mask = None
            labels = None
        # prepare inputs
        frame_tensor = self.im_transform(frame).to(self.device)
        # track one frame
        probs, _ = self.tracker.step(frame_tensor, mask, labels)   # logits 2 (bg fg) H W
        # # refine
        # if first_frame_annotation is None:
        #     out_mask = self.sam_refinement(frame, logits[1], ti)    

        # convert to mask
        out_mask = torch.argmax(probs, dim=0)
        out_mask = (out_mask.detach().cpu().numpy()).astype(np.uint8)

        final_mask = np.zeros_like(out_mask)
        
        # map back
        for k, v in self.mapper.remappings.items():
            final_mask[out_mask == v] = k

        num_objs = final_mask.max()
        painted_image = frame
        for obj in range(1, num_objs+1):
            if np.max(final_mask==obj) == 0:
                continue
            painted_image = mask_painter(painted_image, (final_mask==obj).astype('uint8'), mask_color=obj+1)

        # print(f'max memory allocated: {torch.cuda.max_memory_allocated()/(2**20)} MB')

        return final_mask, final_mask, painted_image

    @torch.no_grad()
    def sam_refinement(self, frame, logits, ti):
        """
        refine segmentation results with mask prompt
        """
        # convert to 1, 256, 256
        self.sam_model.set_image(frame)
        mode = 'mask'
        logits = logits.unsqueeze(0)
        logits = self.resizer(logits).cpu().numpy()
        prompts = {'mask_input': logits}    # 1 256 256
        masks, scores, logits = self.sam_model.predict(prompts, mode, multimask=True)  # masks (n, h, w), scores (n,), logits (n, 256, 256)
        painted_image = mask_painter(frame, masks[np.argmax(scores)].astype('uint8'), mask_alpha=0.8)
        painted_image = Image.fromarray(painted_image)
        painted_image.save(f'/ssd1/gaomingqi/refine/{ti:05d}.png')
        self.sam_model.reset_image()

    @torch.no_grad()
    def clear_memory(self):
        self.tracker.clear_memory()
        self.mapper.clear_labels()


##  how to use:
##  1/3) prepare device and xmem_checkpoint
#   device = 'cuda:2'
#   XMEM_checkpoint = '/ssd1/gaomingqi/checkpoints/XMem-s012.pth'
##  2/3) initialise Base Tracker
#   tracker = BaseTracker(XMEM_checkpoint, device, None, device)    # leave an interface for sam model (currently set None)
##  3/3) 


if __name__ == '__main__':
    # video frames (take videos from DAVIS-2017 as examples)
    video_path_list = glob.glob(os.path.join('/ssd1/gaomingqi/datasets/davis/JPEGImages/480p/horsejump-high', '*.jpg'))
    video_path_list.sort()
    # load frames
    frames = []
    for video_path in video_path_list:
        frames.append(np.array(Image.open(video_path).convert('RGB')))
    frames = np.stack(frames, 0)    # T, H, W, C
    # load first frame annotation
    first_frame_path = '/ssd1/gaomingqi/datasets/davis/Annotations/480p/horsejump-high/00000.png'
    first_frame_annotation = np.array(Image.open(first_frame_path).convert('P'))    # H, W, C

    # ------------------------------------------------------------------------------------
    # how to use
    # ------------------------------------------------------------------------------------
    # 1/4: set checkpoint and device
    device = 'cuda:2'
    XMEM_checkpoint = '/ssd1/gaomingqi/checkpoints/XMem-s012.pth'
    # SAM_checkpoint= '/ssd1/gaomingqi/checkpoints/sam_vit_h_4b8939.pth'
    # model_type = 'vit_h'
    # ------------------------------------------------------------------------------------
    # 2/4: initialise inpainter
    tracker = BaseTracker(XMEM_checkpoint, device, None, device)
    # ------------------------------------------------------------------------------------
    # 3/4: for each frame, get tracking results by tracker.track(frame, first_frame_annotation)
    # frame: numpy array (H, W, C), first_frame_annotation: numpy array (H, W), leave it blank when tracking begins
    painted_frames = []
    for ti, frame in enumerate(frames):
        if ti == 0:
            mask, prob, painted_frame = tracker.track(frame, first_frame_annotation)
            # mask: 
        else:
            mask, prob, painted_frame = tracker.track(frame)
        painted_frames.append(painted_frame)
    # ----------------------------------------------
    # 3/4: clear memory in XMEM for the next video
    tracker.clear_memory()
    # ----------------------------------------------
    # end
    # ----------------------------------------------
    print(f'max memory allocated: {torch.cuda.max_memory_allocated()/(2**20)} MB')
    # set saving path
    save_path = '/ssd1/gaomingqi/results/TAM/blackswan'
    if not os.path.exists(save_path):
        os.mkdir(save_path)
    # save
    for painted_frame in progressbar.progressbar(painted_frames):
        painted_frame = Image.fromarray(painted_frame)
        painted_frame.save(f'{save_path}/{ti:05d}.png')

    # tracker.clear_memory()
    # for ti, frame in enumerate(frames):
    #     print(ti)
    #     # if ti > 200:
    #     #     break
    #     if ti == 0:
    #         mask, prob, painted_image = tracker.track(frame, first_frame_annotation)
    #     else:
    #         mask, prob, painted_image = tracker.track(frame)
    #     # save
    #     painted_image = Image.fromarray(painted_image)
    #     painted_image.save(f'/ssd1/gaomingqi/results/TrackA/gsw/{ti:05d}.png')

    # # track anything given in the first frame annotation
    # for ti, frame in enumerate(frames):
    #     if ti == 0:
    #         mask, prob, painted_image = tracker.track(frame, first_frame_annotation)
    #     else:
    #         mask, prob, painted_image = tracker.track(frame)
    #     # save
    #     painted_image = Image.fromarray(painted_image)
    #     painted_image.save(f'/ssd1/gaomingqi/results/TrackA/horsejump-high/{ti:05d}.png')

    # # ----------------------------------------------------------
    # # another video
    # # ----------------------------------------------------------
    # # video frames
    # video_path_list = glob.glob(os.path.join('/ssd1/gaomingqi/datasets/davis/JPEGImages/480p/camel', '*.jpg'))
    # video_path_list.sort()
    # # first frame
    # first_frame_path = '/ssd1/gaomingqi/datasets/davis/Annotations/480p/camel/00000.png'
    # # load frames
    # frames = []
    # for video_path in video_path_list:
    #     frames.append(np.array(Image.open(video_path).convert('RGB')))
    # frames = np.stack(frames, 0)    # N, H, W, C
    # # load first frame annotation
    # first_frame_annotation = np.array(Image.open(first_frame_path).convert('P'))    # H, W, C

    # print('first video done. clear.')

    # tracker.clear_memory()
    # # track anything given in the first frame annotation
    # for ti, frame in enumerate(frames):
    #     if ti == 0:
    #         mask, prob, painted_image = tracker.track(frame, first_frame_annotation)
    #     else:
    #         mask, prob, painted_image = tracker.track(frame)
    #     # save
    #     painted_image = Image.fromarray(painted_image)
    #     painted_image.save(f'/ssd1/gaomingqi/results/TrackA/camel/{ti:05d}.png')

    # # failure case test
    # failure_path = '/ssd1/gaomingqi/failure'
    # frames = np.load(os.path.join(failure_path, 'video_frames.npy'))
    # # first_frame = np.array(Image.open(os.path.join(failure_path, 'template_frame.png')).convert('RGB'))
    # first_mask = np.array(Image.open(os.path.join(failure_path, 'template_mask.png')).convert('P'))
    # first_mask = np.clip(first_mask, 0, 1)

    # for ti, frame in enumerate(frames):
    #     if ti == 0:
    #         mask, probs, painted_image = tracker.track(frame, first_mask)
    #     else:
    #         mask, probs, painted_image = tracker.track(frame)
    #     # save
    #     painted_image = Image.fromarray(painted_image)
    #     painted_image.save(f'/ssd1/gaomingqi/failure/LJ/{ti:05d}.png')
    #     prob = Image.fromarray((probs[1].cpu().numpy()*255).astype('uint8'))

    #     # prob.save(f'/ssd1/gaomingqi/failure/probs/{ti:05d}.png')