Track-Anything / inpainter /base_inpainter.py
watchtowerss's picture
RAM and VRAM usage reduce
508b599
raw
history blame
13 kB
import os
import glob
from PIL import Image
import torch
import yaml
import cv2
import importlib
import numpy as np
from tqdm import tqdm
from inpainter.util.tensor_util import resize_frames, resize_masks
def read_image_from_split(videp_split_path):
# if type:
image = np.asarray([np.asarray(Image.open(path)) for path in videp_split_path])
# else:
# image = cv2.cvtColor(cv2.imread("/tmp/{}/paintedimages/{}/{:08d}.png".format(username, video_state["video_name"], index+ ".png")), cv2.COLOR_BGR2RGB)
return image
def save_image_to_userfolder(video_state, index, image, type:bool):
if type:
image_path = "/tmp/{}/originimages/{}/{:08d}.png".format(video_state["user_name"], video_state["video_name"], index)
else:
image_path = "/tmp/{}/paintedimages/{}/{:08d}.png".format(video_state["user_name"], video_state["video_name"], index)
cv2.imwrite(image_path, image)
return image_path
class BaseInpainter:
def __init__(self, E2FGVI_checkpoint, device) -> None:
"""
E2FGVI_checkpoint: checkpoint of inpainter (version hq, with multi-resolution support)
"""
net = importlib.import_module('inpainter.model.e2fgvi_hq')
self.model = net.InpaintGenerator().to(device)
self.model.load_state_dict(torch.load(E2FGVI_checkpoint, map_location=device))
self.model.eval()
self.device = device
# load configurations
with open("inpainter/config/config.yaml", 'r') as stream:
config = yaml.safe_load(stream)
self.neighbor_stride = config['neighbor_stride']
self.num_ref = config['num_ref']
self.step = config['step']
# sample reference frames from the whole video
def get_ref_index(self, f, neighbor_ids, length):
ref_index = []
if self.num_ref == -1:
for i in range(0, length, self.step):
if i not in neighbor_ids:
ref_index.append(i)
else:
start_idx = max(0, f - self.step * (self.num_ref // 2))
end_idx = min(length, f + self.step * (self.num_ref // 2))
for i in range(start_idx, end_idx + 1, self.step):
if i not in neighbor_ids:
if len(ref_index) > self.num_ref:
break
ref_index.append(i)
return ref_index
def inpaint_efficient(self, frames, masks, num_tcb, num_tca, dilate_radius=15, ratio=1):
"""
Perform Inpainting for video subsets
frames: numpy array, T, H, W, 3
masks: numpy array, T, H, W
num_tcb: constant, number of temporal context before, frames
num_tca: constant, number of temporal context after, frames
dilate_radius: radius when applying dilation on masks
ratio: down-sample ratio
Output:
inpainted_frames: numpy array, T, H, W, 3
"""
assert frames.shape[:3] == masks.shape, 'different size between frames and masks'
assert ratio > 0 and ratio <= 1, 'ratio must in (0, 1]'
# --------------------
# pre-processing
# --------------------
masks = masks.copy()
masks = np.clip(masks, 0, 1)
kernel = cv2.getStructuringElement(2, (dilate_radius, dilate_radius))
masks = np.stack([cv2.dilate(mask, kernel) for mask in masks], 0)
T, H, W = masks.shape
masks = np.expand_dims(masks, axis=3) # expand to T, H, W, 1
# size: (w, h)
if ratio == 1:
size = None
binary_masks = masks
else:
size = [int(W*ratio), int(H*ratio)]
size = [si+1 if si%2>0 else si for si in size] # only consider even values
# shortest side should be larger than 50
if min(size) < 50:
ratio = 50. / min(H, W)
size = [int(W*ratio), int(H*ratio)]
binary_masks = resize_masks(masks, tuple(size))
frames = resize_frames(frames, tuple(size)) # T, H, W, 3
# frames and binary_masks are numpy arrays
h, w = frames.shape[1:3]
video_length = T - (num_tca + num_tcb) # real video length
# convert to tensor
imgs = (torch.from_numpy(frames).permute(0, 3, 1, 2).contiguous().unsqueeze(0).float().div(255)) * 2 - 1
masks = torch.from_numpy(binary_masks).permute(0, 3, 1, 2).contiguous().unsqueeze(0)
imgs, masks = imgs.to(self.device), masks.to(self.device)
comp_frames = [None] * video_length
tcb_imgs = None
tca_imgs = None
tcb_masks = None
tca_masks = None
# --------------------
# end of pre-processing
# --------------------
# separate tc frames/masks from imgs and masks
if num_tcb > 0:
tcb_imgs = imgs[:, :num_tcb]
tcb_masks = masks[:, :num_tcb]
tcb_binary = binary_masks[:num_tcb]
if num_tca > 0:
tca_imgs = imgs[:, -num_tca:]
tca_masks = masks[:, -num_tca:]
tca_binary = binary_masks[-num_tca:]
end_idx = -num_tca
else:
end_idx = T
imgs = imgs[:, num_tcb:end_idx]
masks = masks[:, num_tcb:end_idx]
binary_masks = binary_masks[num_tcb:end_idx] # only neighbor area are involved
frames = frames[num_tcb:end_idx] # only neighbor area are involved
for f in tqdm(range(0, video_length, self.neighbor_stride), desc='Inpainting image'):
neighbor_ids = [
i for i in range(max(0, f - self.neighbor_stride),
min(video_length, f + self.neighbor_stride + 1))
]
ref_ids = self.get_ref_index(f, neighbor_ids, video_length)
# selected_imgs = imgs[:1, neighbor_ids + ref_ids, :, :, :]
# selected_masks = masks[:1, neighbor_ids + ref_ids, :, :, :]
selected_imgs = imgs[:, neighbor_ids]
selected_masks = masks[:, neighbor_ids]
# pad before
if tcb_imgs is not None:
selected_imgs = torch.concat([selected_imgs, tcb_imgs], dim=1)
selected_masks = torch.concat([selected_masks, tcb_masks], dim=1)
# integrate ref frames
selected_imgs = torch.concat([selected_imgs, imgs[:, ref_ids]], dim=1)
selected_masks = torch.concat([selected_masks, masks[:, ref_ids]], dim=1)
# pad after
if tca_imgs is not None:
selected_imgs = torch.concat([selected_imgs, tca_imgs], dim=1)
selected_masks = torch.concat([selected_masks, tca_masks], dim=1)
with torch.no_grad():
masked_imgs = selected_imgs * (1 - selected_masks)
mod_size_h = 60
mod_size_w = 108
h_pad = (mod_size_h - h % mod_size_h) % mod_size_h
w_pad = (mod_size_w - w % mod_size_w) % mod_size_w
masked_imgs = torch.cat(
[masked_imgs, torch.flip(masked_imgs, [3])],
3)[:, :, :, :h + h_pad, :]
masked_imgs = torch.cat(
[masked_imgs, torch.flip(masked_imgs, [4])],
4)[:, :, :, :, :w + w_pad]
pred_imgs, _ = self.model(masked_imgs, len(neighbor_ids))
pred_imgs = pred_imgs[:, :, :h, :w]
pred_imgs = (pred_imgs + 1) / 2
pred_imgs = pred_imgs.cpu().permute(0, 2, 3, 1).numpy() * 255
for i in range(len(neighbor_ids)):
idx = neighbor_ids[i]
img = pred_imgs[i].astype(np.uint8) * binary_masks[idx] + frames[idx] * (
1 - binary_masks[idx])
if comp_frames[idx] is None:
comp_frames[idx] = img
else:
comp_frames[idx] = comp_frames[idx].astype(
np.float32) * 0.5 + img.astype(np.float32) * 0.5
torch.cuda.empty_cache()
inpainted_frames = np.stack(comp_frames, 0)
return inpainted_frames.astype(np.uint8)
def inpaint(self, frames_path, masks, dilate_radius=15, ratio=1):
"""
Perform Inpainting for video subsets
frames: numpy array, T, H, W, 3
masks: numpy array, T, H, W
dilate_radius: radius when applying dilation on masks
ratio: down-sample ratio
Output:
inpainted_frames: numpy array, T, H, W, 3
"""
# assert frames.shape[:3] == masks.shape, 'different size between frames and masks'
assert ratio > 0 and ratio <= 1, 'ratio must in (0, 1]'
# set interval
interval = 45
context_range = 10 # for each split, consider its temporal context [-context_range] frames and [context_range] frames
# split frames into subsets
video_length = len(frames_path)
num_splits = video_length // interval
id_splits = [[i*interval, (i+1)*interval] for i in range(num_splits)] # id splits
# if remaining split > interval/2, add a new split, else, append to the last split
if video_length - id_splits[-1][-1] > interval / 2:
id_splits.append([num_splits*interval, video_length])
else:
id_splits[-1][-1] = video_length
# perform inpainting for each split
inpainted_splits = []
for id_split in id_splits:
video_split_path = frames_path[id_split[0]:id_split[1]]
video_split = read_image_from_split(video_split_path)
mask_split = masks[id_split[0]:id_split[1]]
# | id_before | ----- | id_split[0] | ----- | id_split[1] | ----- | id_after |
# add temporal context
id_before = max(0, id_split[0] - self.step * context_range)
try:
tcb_frames = np.stack([np.array(Image.open(frames_path[idb])) for idb in range(id_before, id_split[0]-self.step, self.step)], 0)
tcb_masks = np.stack([masks[idb] for idb in range(id_before, id_split[0]-self.step, self.step)], 0)
num_tcb = len(tcb_frames)
except:
num_tcb = 0
id_after = min(video_length, id_split[1] + self.step * context_range)
try:
tca_frames = np.stack([np.array(Image.open(frames_path[ida])) for ida in range(id_split[1]+self.step, id_after, self.step)], 0)
tca_masks = np.stack([masks[ida] for ida in range(id_split[1]+self.step, id_after, self.step)], 0)
num_tca = len(tca_frames)
except:
num_tca = 0
# concatenate temporal context frames/masks with input frames/masks (for parallel pre-processing)
if num_tcb > 0:
video_split = np.concatenate([tcb_frames, video_split], 0)
mask_split = np.concatenate([tcb_masks, mask_split], 0)
if num_tca > 0:
video_split = np.concatenate([video_split, tca_frames], 0)
mask_split = np.concatenate([mask_split, tca_masks], 0)
# inpaint each split
inpainted_splits.append(self.inpaint_efficient(video_split, mask_split, num_tcb, num_tca, dilate_radius, ratio))
inpainted_frames = np.concatenate(inpainted_splits, 0)
return inpainted_frames.astype(np.uint8)
if __name__ == '__main__':
frame_path = glob.glob(os.path.join('/ssd1/gaomingqi/datasets/davis/JPEGImages/480p/parkour', '*.jpg'))
frame_path.sort()
mask_path = glob.glob(os.path.join('/ssd1/gaomingqi/datasets/davis/Annotations/480p/parkour', "*.png"))
mask_path.sort()
save_path = '/ssd1/gaomingqi/results/inpainting/parkour'
if not os.path.exists(save_path):
os.mkdir(save_path)
frames = []
masks = []
for fid, mid in zip(frame_path, mask_path):
frames.append(Image.open(fid).convert('RGB'))
masks.append(Image.open(mid).convert('P'))
frames = np.stack(frames, 0)
masks = np.stack(masks, 0)
# ----------------------------------------------
# how to use
# ----------------------------------------------
# 1/3: set checkpoint and device
checkpoint = '/ssd1/gaomingqi/checkpoints/E2FGVI-HQ-CVPR22.pth'
device = 'cuda:6'
# 2/3: initialise inpainter
base_inpainter = BaseInpainter(checkpoint, device)
# 3/3: inpainting (frames: numpy array, T, H, W, 3; masks: numpy array, T, H, W)
# ratio: (0, 1], ratio for down sample, default value is 1
inpainted_frames = base_inpainter.inpaint(frames, masks, ratio=0.01) # numpy array, T, H, W, 3
# ----------------------------------------------
# end
# ----------------------------------------------
# save
for ti, inpainted_frame in enumerate(inpainted_frames):
frame = Image.fromarray(inpainted_frame).convert('RGB')
frame.save(os.path.join(save_path, f'{ti:05d}.jpg'))