Track-Anything / track_anything.py
watchtowerss's picture
memory usage reduce for tracking
23d6e96
raw
history blame
5.11 kB
import PIL
from tqdm import tqdm
from tools.interact_tools import SamControler
from tracker.base_tracker import BaseTracker
from inpainter.base_inpainter import BaseInpainter
import numpy as np
import argparse
import cv2
def read_image_from_userfolder(image_path):
# if type:
image = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
# else:
# image = cv2.cvtColor(cv2.imread("/tmp/{}/paintedimages/{}/{:08d}.png".format(username, video_state["video_name"], index+ ".png")), cv2.COLOR_BGR2RGB)
return image
def save_image_to_userfolder(video_state, index, image, type:bool):
if type:
image_path = "/tmp/{}/originimages/{}/{:08d}.png".format(video_state["user_name"], video_state["video_name"], index)
else:
image_path = "/tmp/{}/paintedimages/{}/{:08d}.png".format(video_state["user_name"], video_state["video_name"], index)
cv2.imwrite(image_path, image)
return image_path
class TrackingAnything():
def __init__(self, sam_checkpoint, xmem_checkpoint, e2fgvi_checkpoint, args):
self.args = args
self.sam_checkpoint = sam_checkpoint
self.xmem_checkpoint = xmem_checkpoint
self.e2fgvi_checkpoint = e2fgvi_checkpoint
self.samcontroler = SamControler(self.sam_checkpoint, args.sam_model_type, args.device)
self.xmem = BaseTracker(self.xmem_checkpoint, device=args.device)
self.baseinpainter = BaseInpainter(self.e2fgvi_checkpoint, args.device)
# def inference_step(self, first_flag: bool, interact_flag: bool, image: np.ndarray,
# same_image_flag: bool, points:np.ndarray, labels: np.ndarray, logits: np.ndarray=None, multimask=True):
# if first_flag:
# mask, logit, painted_image = self.samcontroler.first_frame_click(image, points, labels, multimask)
# return mask, logit, painted_image
# if interact_flag:
# mask, logit, painted_image = self.samcontroler.interact_loop(image, same_image_flag, points, labels, logits, multimask)
# return mask, logit, painted_image
# mask, logit, painted_image = self.xmem.track(image, logit)
# return mask, logit, painted_image
def first_frame_click(self, image: np.ndarray, points:np.ndarray, labels: np.ndarray, multimask=True):
mask, logit, painted_image = self.samcontroler.first_frame_click(image, points, labels, multimask)
return mask, logit, painted_image
# def interact(self, image: np.ndarray, same_image_flag: bool, points:np.ndarray, labels: np.ndarray, logits: np.ndarray=None, multimask=True):
# mask, logit, painted_image = self.samcontroler.interact_loop(image, same_image_flag, points, labels, logits, multimask)
# return mask, logit, painted_image
def generator(self, images: list, template_mask:np.ndarray, video_state:dict):
masks = []
logits = []
painted_images = []
for i in tqdm(range(len(images)), desc="Tracking image"):
if i ==0:
mask, logit, painted_image = self.xmem.track(read_image_from_userfolder(images[i]), template_mask)
masks.append(mask)
logits.append(logit)
# painted_images.append(painted_image)
painted_images.append(save_image_to_userfolder(video_state, index=i, image=cv2.cvtColor(np.asarray(painted_image),cv2.COLOR_BGR2RGB), type=False))
else:
mask, logit, painted_image = self.xmem.track(read_image_from_userfolder(images[i]))
masks.append(mask)
logits.append(logit)
# painted_images.append(painted_image)
painted_images.append(save_image_to_userfolder(video_state, index=i, image=cv2.cvtColor(np.asarray(painted_image),cv2.COLOR_BGR2RGB), type=False))
return masks, logits, painted_images
def parse_augment():
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default="cuda:0")
parser.add_argument('--sam_model_type', type=str, default="vit_h")
parser.add_argument('--port', type=int, default=6080, help="only useful when running gradio applications")
parser.add_argument('--debug', action="store_true")
parser.add_argument('--mask_save', default=False)
args = parser.parse_args()
if args.debug:
print(args)
return args
if __name__ == "__main__":
masks = None
logits = None
painted_images = None
images = []
image = np.array(PIL.Image.open('/hhd3/gaoshang/truck.jpg'))
args = parse_augment()
# images.append(np.ones((20,20,3)).astype('uint8'))
# images.append(np.ones((20,20,3)).astype('uint8'))
images.append(image)
images.append(image)
mask = np.zeros_like(image)[:,:,0]
mask[0,0]= 1
trackany = TrackingAnything('/ssd1/gaomingqi/checkpoints/sam_vit_h_4b8939.pth','/ssd1/gaomingqi/checkpoints/XMem-s012.pth', args)
masks, logits ,painted_images= trackany.generator(images, mask)