File size: 11,241 Bytes
25d2eb7 2827b8a 7a1cd7a adde4af 2827b8a f5eb405 3b4c438 f5eb405 3b4c438 f5eb405 3b4c438 f5eb405 6b0e834 7a1cd7a 892ceeb 7a1cd7a adde4af 2827b8a 7a1cd7a 7ed3881 3b4c438 892ceeb 2827b8a f5eb405 3bd0812 9f13004 f5eb405 3b4c438 9f13004 f5eb405 3bd0812 4b1ac5a 9f13004 4b1ac5a 3bd0812 4b1ac5a 9f13004 adde4af 3bd0812 f5eb405 9f13004 adde4af 6b0e834 3b4c438 3bd0812 5422464 3bd0812 5422464 3bd0812 5422464 3bd0812 9f13004 3bd0812 f5eb405 adde4af 3b4c438 9f13004 f5eb405 3bd0812 3b4c438 9f13004 f5eb405 3bd0812 3b4c438 9f13004 4b1ac5a 3bd0812 3b4c438 9f13004 4b1ac5a 3bd0812 3b4c438 9f13004 adde4af 3bd0812 3b4c438 9f13004 adde4af 3bd0812 f5eb405 9f13004 adde4af 6b0e834 3b4c438 3bd0812 5422464 3bd0812 5422464 3bd0812 5422464 3bd0812 9f13004 f5eb405 6b0e834 3b4c438 adde4af 20f4a6e adde4af 20f4a6e adde4af 20f4a6e adde4af 20f4a6e adde4af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import gradio as gr
from datasets import load_dataset
import numpy as np
from model2vec import StaticModel
from reach import Reach
from difflib import ndiff
import asyncio
# Load the model at startup
model = StaticModel.from_pretrained("minishlab/M2V_base_output")
# Update default dataset to 'sst2' and set default threshold to 0.9
default_dataset1_name = "sst2"
default_dataset1_split = "train"
default_dataset2_name = "sst2"
default_dataset2_split = "validation"
default_text_column = "sentence"
default_threshold = 0.9
# Load the default datasets at startup
ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
def batch_iterable(iterable, batch_size):
"""Helper function to create batches from an iterable."""
for i in range(0, len(iterable), batch_size):
yield iterable[i:i + batch_size]
def display_word_differences(x: str, y: str) -> str:
diff = ndiff(x.split(), y.split())
return " ".join([word for word in diff if word.startswith(('+', '-'))])
async def compute_embeddings_async(texts, batch_size, progress, desc):
embeddings = []
total_batches = (len(texts) + batch_size - 1) // batch_size
for i, batch_texts in enumerate(batch_iterable(texts, batch_size)):
batch_embeddings = await asyncio.to_thread(model.encode, batch_texts, show_progressbar=False)
embeddings.append(batch_embeddings)
progress((i + 1) / total_batches, desc=desc)
await asyncio.sleep(0)
embedding_matrix = np.concatenate(embeddings, axis=0)
return embedding_matrix
async def deduplicate_async(embedding_matrix: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[np.ndarray, dict[int, int]]:
"""
Deduplicate embeddings asynchronously.
"""
progress(0, desc="Building search index...")
reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
deduplicated_indices = set(range(len(embedding_matrix)))
duplicate_to_original_mapping = {}
progress(0, desc="Finding nearest neighbors...")
results = await asyncio.to_thread(reach.nearest_neighbor_threshold,
embedding_matrix,
threshold=threshold,
batch_size=batch_size,
show_progressbar=False)
total_items = len(embedding_matrix)
for i, similar_items in enumerate(results):
if i not in deduplicated_indices:
continue
similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
for sim_idx in similar_indices:
if sim_idx in deduplicated_indices:
deduplicated_indices.remove(sim_idx)
duplicate_to_original_mapping[sim_idx] = i
if i % 100 == 0:
progress(i / total_items, desc="Processing duplicates")
await asyncio.sleep(0)
progress(1, desc="Processing duplicates")
return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
async def perform_deduplication(
deduplication_type,
dataset1_name,
dataset1_split,
dataset1_text_column,
dataset2_name="",
dataset2_split="",
dataset2_text_column="",
threshold=default_threshold,
progress=gr.Progress(track_tqdm=True)
):
try:
# Convert threshold to float
threshold = float(threshold)
# Initialize status message
status = ""
if deduplication_type == "Single dataset":
# Load Dataset 1
status = "Loading Dataset 1..."
yield status, ""
if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
ds = ds_default1
else:
ds = load_dataset(dataset1_name, split=dataset1_split)
# Extract texts
status = "Extracting texts from Dataset 1..."
yield status, ""
texts = [example[dataset1_text_column] for example in ds]
# Compute embeddings
status = "Computing embeddings for Dataset 1..."
yield status, ""
embedding_matrix = await compute_embeddings_async(texts, batch_size=64, progress=progress, desc="Computing embeddings for Dataset 1")
# Deduplicate
status = "Deduplicating embeddings..."
yield status, ""
deduplicated_indices, duplicate_to_original_mapping = await deduplicate_async(
embedding_matrix, threshold, progress=progress
)
# Prepare the results
num_duplicates = len(duplicate_to_original_mapping)
num_total = len(texts)
num_deduplicated = len(deduplicated_indices)
result_text = f"**Total documents:** {num_total}\n"
result_text += f"**Number of duplicates found:** {num_duplicates}\n"
result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
# Show deduplicated examples
if num_duplicates > 0:
result_text += "**Examples of duplicates found:**\n\n"
num_examples = min(5, num_duplicates)
for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
original_text = texts[original_idx]
duplicate_text = texts[duplicate_idx]
differences = display_word_differences(original_text, duplicate_text)
result_text += f"**Original text:**\n{original_text}\n\n"
result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
result_text += f"**Differences:**\n{differences}\n"
result_text += "-" * 50 + "\n\n"
else:
result_text += "No duplicates found."
# Final status
status = "Deduplication completed."
yield status, result_text
elif deduplication_type == "Cross-dataset":
# Similar code for cross-dataset deduplication, using async functions
# Load Dataset 1
status = "Loading Dataset 1..."
yield status, ""
if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
ds1 = ds_default1
else:
ds1 = load_dataset(dataset1_name, split=dataset1_split)
# Load Dataset 2
status = "Loading Dataset 2..."
yield status, ""
if dataset2_name == default_dataset2_name and dataset2_split == default_dataset2_split:
ds2 = ds_default2
else:
ds2 = load_dataset(dataset2_name, split=dataset2_split)
# Extract texts from Dataset 1
status = "Extracting texts from Dataset 1..."
yield status, ""
texts1 = [example[dataset1_text_column] for example in ds1]
# Extract texts from Dataset 2
status = "Extracting texts from Dataset 2..."
yield status, ""
texts2 = [example[dataset2_text_column] for example in ds2]
# Compute embeddings for Dataset 1
status = "Computing embeddings for Dataset 1..."
yield status, ""
embedding_matrix1 = await compute_embeddings_async(texts1, batch_size=64, progress=progress, desc="Computing embeddings for Dataset 1")
# Compute embeddings for Dataset 2
status = "Computing embeddings for Dataset 2..."
yield status, ""
embedding_matrix2 = await compute_embeddings_async(texts2, batch_size=64, progress=progress, desc="Computing embeddings for Dataset 2")
# Deduplicate across datasets
status = "Deduplicating embeddings across datasets..."
yield status, ""
duplicate_indices_in_ds2, duplicate_to_original_mapping = await deduplicate_across_datasets_async(
embedding_matrix1, embedding_matrix2, threshold, progress=progress
)
num_duplicates = len(duplicate_indices_in_ds2)
num_total_ds2 = len(texts2)
num_unique_ds2 = num_total_ds2 - num_duplicates
result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
# Show deduplicated examples
if num_duplicates > 0:
result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
num_examples = min(5, num_duplicates)
for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
original_idx = duplicate_to_original_mapping[duplicate_idx]
original_text = texts1[original_idx]
duplicate_text = texts2[duplicate_idx]
differences = display_word_differences(original_text, duplicate_text)
result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
result_text += f"**Differences:**\n{differences}\n"
result_text += "-" * 50 + "\n\n"
else:
result_text += "No duplicates found."
# Final status
status = "Deduplication completed."
yield status, result_text
except Exception as e:
yield f"An error occurred: {e}", ""
raise e
async def deduplicate_across_datasets_async(embedding_matrix_1: np.ndarray, embedding_matrix_2: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[list[int], dict[int, int]]:
"""
Deduplicate embeddings across two datasets asynchronously.
"""
progress(0, desc="Building search index from Dataset 1...")
reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])
duplicate_indices_in_test = []
duplicate_to_original_mapping = {}
progress(0, desc="Finding nearest neighbors between datasets...")
results = await asyncio.to_thread(reach.nearest_neighbor_threshold,
embedding_matrix_2,
threshold=threshold,
batch_size=batch_size,
show_progressbar=False)
total_items = len(embedding_matrix_2)
for i, similar_items in enumerate(results):
similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
if similar_indices:
duplicate_indices_in_test.append(i)
duplicate_to_original_mapping[i] = similar_indices[0]
if i % 100 == 0:
progress(i / total_items, desc="Processing duplicates across datasets")
|