File size: 19,835 Bytes
25d2eb7 2827b8a 39a5b1c 2827b8a 7a1cd7a a81fb12 95530b9 39a5b1c f5eb405 95530b9 3b4c438 f5eb405 95530b9 c58907b 24f7d5b ed5b7bd 95530b9 58d8f1a 7a1cd7a ed5b7bd 7a1cd7a 73a84b9 24f7d5b ed5b7bd 95530b9 7a1cd7a 4f0286f 24f7d5b 2827b8a ed5b7bd f5eb405 3bd0812 95530b9 f39d105 24f7d5b f5eb405 95530b9 c58907b 95530b9 2a0be82 95530b9 c58907b 3bd0812 5422464 95530b9 5422464 3bd0812 95530b9 c58907b 95530b9 f39d105 24f7d5b 95530b9 c58907b 95530b9 2a0be82 95530b9 c58907b 39a5b1c 95530b9 39a5b1c 95530b9 f5eb405 6b0e834 39a5b1c c58907b 72c7e2c 1282e7b e49e0e9 24f7d5b d54c792 24f7d5b 4f0286f c58907b 4f0286f 95530b9 4f0286f 95530b9 4f0286f 95530b9 d54c792 1a5f99b c58907b 4f0286f 24f7d5b 95530b9 4f0286f 95530b9 4f0286f c58907b 4f0286f c58907b 4f0286f 72c7e2c 4f0286f 24f7d5b ed5b7bd 72c7e2c ed5b7bd 72c7e2c ed5b7bd 72c7e2c ed5b7bd 72c7e2c ed5b7bd 72c7e2c ed5b7bd 72c7e2c ed5b7bd 72c7e2c ed5b7bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
import gradio as gr
from datasets import load_dataset
import numpy as np
from model2vec import StaticModel
from reach import Reach
from difflib import ndiff
# Load the model
model = StaticModel.from_pretrained("minishlab/M2V_base_output")
# Default parameters
default_dataset_name = "sst2"
default_dataset_split = "train"
default_text_column = "sentence"
default_threshold = 0.9
def deduplicate_embeddings(
embeddings_a: np.ndarray,
embeddings_b: np.ndarray = None,
threshold: float = 0.9,
batch_size: int = 1024,
progress=None
) -> tuple[np.ndarray, dict[int, int]]:
"""
Deduplicate embeddings within one dataset or across two datasets.
:param embeddings_a: Embeddings of Dataset 1.
:param embeddings_b: Optional, embeddings of Dataset 2.
:param threshold: Similarity threshold for deduplication.
:param batch_size: Batch size for similarity computation.
:param progress: Gradio progress tracker for feedback.
:return: Deduplicated indices and a mapping of removed indices to their original counterparts.
"""
if embeddings_b is None:
reach = Reach(vectors=embeddings_a, items=[str(i) for i in range(len(embeddings_a))])
duplicate_to_original = {}
results = reach.nearest_neighbor_threshold(
embeddings_a, threshold=threshold, batch_size=batch_size, show_progressbar=False
)
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=len(embeddings_a))):
for sim_idx, _ in similar_items:
sim_idx = int(sim_idx)
if sim_idx != i and sim_idx not in duplicate_to_original:
duplicate_to_original[sim_idx] = i
deduplicated_indices = set(range(len(embeddings_a))) - set(duplicate_to_original.keys())
return deduplicated_indices, duplicate_to_original
else:
reach = Reach(vectors=embeddings_a, items=[str(i) for i in range(len(embeddings_a))])
duplicate_indices_in_b = []
duplicate_to_original = {}
results = reach.nearest_neighbor_threshold(
embeddings_b, threshold=threshold, batch_size=batch_size, show_progressbar=False
)
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=len(embeddings_b))):
if similar_items:
duplicate_indices_in_b.append(i)
duplicate_to_original[i] = int(similar_items[0][0])
return duplicate_indices_in_b, duplicate_to_original
def display_word_differences(x: str, y: str) -> str:
"""
Display the word-level differences between two texts, formatted to avoid
misinterpretation of Markdown syntax.
:param x: First text.
:param y: Second text.
:return: A string showing word-level differences, wrapped in a code block.
"""
diff = ndiff(x.split(), y.split())
formatted_diff = "\n".join(word for word in diff if word.startswith(("+", "-")))
return f"```\n{formatted_diff}\n```"
def load_dataset_texts(dataset_name: str, dataset_split: str, text_column: str) -> list[str]:
"""
Load texts from a specified dataset and split.
:param dataset_name: Name of the dataset.
:param dataset_split: Split of the dataset (e.g., 'train', 'validation').
:param text_column: Name of the text column.
:return: A list of texts from the dataset.
"""
ds = load_dataset(dataset_name, split=dataset_split)
return [example[text_column] for example in ds]
def perform_deduplication(
deduplication_type: str,
dataset1_name: str,
dataset1_split: str,
dataset1_text_column: str,
dataset2_name: str = "",
dataset2_split: str = "",
dataset2_text_column: str = "",
threshold: float = default_threshold,
progress: gr.Progress = gr.Progress(track_tqdm=True)
):
"""
Perform deduplication on one or two datasets based on the deduplication type.
:param deduplication_type: 'Single dataset' or 'Cross-dataset'.
:param dataset1_name: Name of the first dataset.
:param dataset1_split: Split of the first dataset.
:param dataset1_text_column: Text column of the first dataset.
:param dataset2_name: Optional, name of the second dataset (for cross-dataset deduplication).
:param dataset2_split: Optional, split of the second dataset.
:param dataset2_text_column: Optional, text column of the second dataset.
:param threshold: Similarity threshold for deduplication.
:param progress: Gradio progress tracker.
:return: Status updates and result text for the Gradio interface.
"""
try:
threshold = float(threshold)
# Load and process Dataset 1
yield "Loading Dataset 1...", ""
texts1 = load_dataset_texts(dataset1_name, dataset1_split, dataset1_text_column)
yield "Computing embeddings for Dataset 1...", ""
embeddings1 = model.encode(texts1, show_progressbar=True)
if deduplication_type == "Single dataset":
# Deduplicate within Dataset 1
yield "Deduplicating within Dataset 1...", ""
deduplicated_indices, duplicate_mapping = deduplicate_embeddings(
embeddings1, threshold=threshold, progress=progress
)
num_duplicates = len(duplicate_mapping)
result_text = (
f"**Total documents:** {len(texts1)}\n\n"
f"**Duplicates found:** {num_duplicates}\n\n"
f"**Unique documents after deduplication:** {len(deduplicated_indices)}\n\n"
)
if num_duplicates > 0:
result_text += "**Sample duplicates:**\n\n"
for dup_idx, orig_idx in list(duplicate_mapping.items())[:5]:
orig_text = texts1[orig_idx]
dup_text = texts1[dup_idx]
differences = display_word_differences(orig_text, dup_text)
result_text += (
f"**Original:**\n{orig_text}\n\n"
f"**Duplicate:**\n{dup_text}\n\n"
f"**Differences:**\n{differences}\n"
+ "-" * 50 + "\n\n"
)
else:
result_text += "No duplicates found."
yield "Deduplication completed.", result_text
else:
# Load and process Dataset 2
yield "Loading Dataset 2...", ""
texts2 = load_dataset_texts(dataset2_name, dataset2_split, dataset2_text_column)
yield "Computing embeddings for Dataset 2...", ""
embeddings2 = model.encode(texts2, show_progressbar=True)
# Deduplicate Dataset 2 against Dataset 1
yield "Deduplicating Dataset 2 against Dataset 1...", ""
duplicate_indices, duplicate_mapping = deduplicate_embeddings(
embeddings1, embeddings_b=embeddings2, threshold=threshold, progress=progress
)
num_duplicates = len(duplicate_indices)
result_text = (
f"**Total documents in {dataset2_name}/{dataset2_split}:** {len(texts2)}\n\n"
f"**Duplicates found in Dataset 2:** {num_duplicates}\n\n"
f"**Unique documents after deduplication:** {len(texts2) - num_duplicates}\n\n"
)
if num_duplicates > 0:
result_text += "**Sample duplicates from Dataset 2:**\n\n"
for idx in duplicate_indices[:5]:
orig_text = texts1[duplicate_mapping[idx]]
dup_text = texts2[idx]
differences = display_word_differences(orig_text, dup_text)
result_text += (
f"**Original (Dataset 1):**\n{orig_text}\n\n"
f"**Duplicate (Dataset 2):**\n{dup_text}\n\n"
f"**Differences:**\n{differences}\n"
+ "-" * 50 + "\n\n"
)
else:
result_text += "No duplicates found."
yield "Deduplication completed.", result_text
except Exception as e:
yield f"An error occurred: {e}", ""
raise e
# Gradio app with stop button support
with gr.Blocks(css="#status_output { height: 50px; overflow: auto; }") as demo:
gr.Markdown("# Semantic Deduplication")
gr.Markdown("""
This demo showcases semantic deduplication using Model2Vec for HuggingFace datasets.
It can be used to identify duplicate texts within a single dataset or across two datasets.
You can adjust the similarity threshold to control the strictness of the deduplication.\n
NOTE: this demo runs on a free CPU backend, so it may be slow for large datasets. For faster results, please run the code locally.
""")
deduplication_type = gr.Radio(
choices=["Single dataset", "Cross-dataset"],
label="Deduplication Type",
value="Single dataset",
)
with gr.Row():
dataset1_name = gr.Textbox(value=default_dataset_name, label="Dataset 1 Name")
dataset1_split = gr.Textbox(value=default_dataset_split, label="Dataset 1 Split")
dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
dataset2_inputs = gr.Column(visible=False)
with dataset2_inputs:
gr.Markdown("### Dataset 2")
with gr.Row():
dataset2_name = gr.Textbox(value=default_dataset_name, label="Dataset 2 Name")
dataset2_split = gr.Textbox(value=default_dataset_split, label="Dataset 2 Split")
dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
threshold = gr.Slider(0.0, 1.0, value=default_threshold, label="Similarity Threshold")
compute_button = gr.Button("Deduplicate")
status_output = gr.Markdown(elem_id="status_output")
result_output = gr.Markdown()
def update_visibility(choice: str):
return gr.update(visible=choice == "Cross-dataset")
deduplication_type.change(update_visibility, inputs=deduplication_type, outputs=dataset2_inputs)
compute_button.click(
fn=perform_deduplication,
inputs=[
deduplication_type,
dataset1_name,
dataset1_split,
dataset1_text_column,
dataset2_name,
dataset2_split,
dataset2_text_column,
threshold,
],
outputs=[status_output, result_output],
)
demo.launch()
# import gradio as gr
# from datasets import load_dataset
# import numpy as np
# from model2vec import StaticModel
# from reach import Reach
# from difflib import ndiff
# # Load the model
# model = StaticModel.from_pretrained("minishlab/M2V_base_output")
# # Default parameters
# default_dataset_name = "sst2"
# default_dataset_split = "train"
# default_text_column = "sentence"
# default_threshold = 0.9
# def deduplicate_embeddings(
# embeddings_a: np.ndarray,
# embeddings_b: np.ndarray = None,
# threshold: float = 0.9,
# batch_size: int = 1024,
# progress=None
# ) -> tuple[np.ndarray, dict[int, int]]:
# """Deduplicate embeddings within one dataset or across two datasets."""
# if embeddings_b is None:
# reach = Reach(vectors=embeddings_a, items=[str(i) for i in range(len(embeddings_a))])
# duplicate_to_original = {}
# results = reach.nearest_neighbor_threshold(
# embeddings_a, threshold=threshold, batch_size=batch_size, show_progressbar=False
# )
# for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=len(embeddings_a))):
# for sim_idx, _ in similar_items:
# sim_idx = int(sim_idx)
# if sim_idx != i and sim_idx not in duplicate_to_original:
# duplicate_to_original[sim_idx] = i
# deduplicated_indices = set(range(len(embeddings_a))) - set(duplicate_to_original.keys())
# return deduplicated_indices, duplicate_to_original
# else:
# reach = Reach(vectors=embeddings_a, items=[str(i) for i in range(len(embeddings_a))])
# duplicate_indices_in_b = []
# duplicate_to_original = {}
# results = reach.nearest_neighbor_threshold(
# embeddings_b, threshold=threshold, batch_size=batch_size, show_progressbar=False
# )
# for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=len(embeddings_b))):
# if similar_items:
# duplicate_indices_in_b.append(i)
# duplicate_to_original[i] = int(similar_items[0][0])
# return duplicate_indices_in_b, duplicate_to_original
# def display_word_differences(x: str, y: str) -> str:
# """Display word-level differences between two texts, avoiding Markdown issues."""
# diff = ndiff(x.split(), y.split())
# formatted_diff = "\n".join(word for word in diff if word.startswith(("+", "-")))
# return f"```\n{formatted_diff}\n```"
# def load_dataset_texts(dataset_name: str, dataset_split: str, text_column: str) -> list[str]:
# """Load texts from a specified dataset and split."""
# ds = load_dataset(dataset_name, split=dataset_split)
# return [example[text_column] for example in ds]
# def perform_deduplication(
# deduplication_type: str,
# dataset1_name: str,
# dataset1_split: str,
# dataset1_text_column: str,
# dataset2_name: str = "",
# dataset2_split: str = "",
# dataset2_text_column: str = "",
# threshold: float = default_threshold,
# progress: gr.Progress = gr.Progress(track_tqdm=True)
# ):
# """Perform deduplication on one or two datasets."""
# try:
# threshold = float(threshold)
# # Load and process Dataset 1
# yield "Loading Dataset 1...", ""
# texts1 = load_dataset_texts(dataset1_name, dataset1_split, dataset1_text_column)
# yield "Computing embeddings for Dataset 1...", ""
# embeddings1 = model.encode(texts1, show_progressbar=True)
# if deduplication_type == "Single dataset":
# # Deduplicate within Dataset 1
# yield "Deduplicating within Dataset 1...", ""
# deduplicated_indices, duplicate_mapping = deduplicate_embeddings(
# embeddings1, threshold=threshold, progress=progress
# )
# num_duplicates = len(duplicate_mapping)
# result_text = (
# f"**Total documents:** {len(texts1)}\n\n"
# f"**Duplicates found:** {num_duplicates}\n\n"
# f"**Unique documents after deduplication:** {len(deduplicated_indices)}\n\n"
# )
# if num_duplicates > 0:
# result_text += "**Sample duplicates:**\n\n"
# for dup_idx, orig_idx in list(duplicate_mapping.items())[:5]:
# orig_text = texts1[orig_idx]
# dup_text = texts1[dup_idx]
# differences = display_word_differences(orig_text, dup_text)
# result_text += (
# f"**Original:**\n{orig_text}\n\n"
# f"**Duplicate:**\n{dup_text}\n\n"
# f"**Differences:**\n{differences}\n"
# + "-" * 50 + "\n\n"
# )
# else:
# result_text += "No duplicates found."
# yield "Deduplication completed.", result_text
# else:
# # Load and process Dataset 2
# yield "Loading Dataset 2...", ""
# texts2 = load_dataset_texts(dataset2_name, dataset2_split, dataset2_text_column)
# yield "Computing embeddings for Dataset 2...", ""
# embeddings2 = model.encode(texts2, show_progressbar=True)
# # Deduplicate Dataset 2 against Dataset 1
# yield "Deduplicating Dataset 2 against Dataset 1...", ""
# duplicate_indices, duplicate_mapping = deduplicate_embeddings(
# embeddings1, embeddings_b=embeddings2, threshold=threshold, progress=progress
# )
# num_duplicates = len(duplicate_indices)
# result_text = (
# f"**Total documents in {dataset2_name}/{dataset2_split}:** {len(texts2)}\n\n"
# f"**Duplicates found in Dataset 2:** {num_duplicates}\n\n"
# f"**Unique documents after deduplication:** {len(texts2) - num_duplicates}\n\n"
# )
# if num_duplicates > 0:
# result_text += "**Sample duplicates from Dataset 2:**\n\n"
# for idx in duplicate_indices[:5]:
# orig_text = texts1[duplicate_mapping[idx]]
# dup_text = texts2[idx]
# differences = display_word_differences(orig_text, dup_text)
# result_text += (
# f"**Original (Dataset 1):**\n{orig_text}\n\n"
# f"**Duplicate (Dataset 2):**\n{dup_text}\n\n"
# f"**Differences:**\n{differences}\n"
# + "-" * 50 + "\n\n"
# )
# else:
# result_text += "No duplicates found."
# yield "Deduplication completed.", result_text
# except Exception as e:
# yield f"An error occurred: {e}", ""
# raise e
# # Gradio app with stop button support
# with gr.Blocks(css="#status_output { height: 50px; overflow: auto; }") as demo:
# gr.Markdown("# Semantic Deduplication")
# gr.Markdown("""
# This demo showcases semantic deduplication using Model2Vec for HuggingFace datasets.
# It can be used to identify duplicate texts within a single dataset or across two datasets.
# You can adjust the similarity threshold to control the strictness of the deduplication.\n
# NOTE: this demo runs on a free CPU backend, so it may be slow for large datasets. For faster results, please run the code locally.
# """)
# deduplication_type = gr.Radio(
# choices=["Single dataset", "Cross-dataset"],
# label="Deduplication Type",
# value="Single dataset",
# )
# with gr.Row():
# dataset1_name = gr.Textbox(value=default_dataset_name, label="Dataset 1 Name")
# dataset1_split = gr.Textbox(value=default_dataset_split, label="Dataset 1 Split")
# dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
# dataset2_inputs = gr.Column(visible=False)
# with dataset2_inputs:
# gr.Markdown("### Dataset 2")
# with gr.Row():
# dataset2_name = gr.Textbox(value=default_dataset_name, label="Dataset 2 Name")
# dataset2_split = gr.Textbox(value=default_dataset_split, label="Dataset 2 Split")
# dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
# threshold = gr.Slider(0.0, 1.0, value=default_threshold, label="Similarity Threshold")
# compute_button = gr.Button("Deduplicate")
# status_output = gr.Markdown(elem_id="status_output")
# result_output = gr.Markdown()
# def update_visibility(choice: str):
# return gr.update(visible=choice == "Cross-dataset")
# deduplication_type.change(update_visibility, inputs=deduplication_type, outputs=dataset2_inputs)
# compute_button.click(
# fn=perform_deduplication,
# inputs=[
# deduplication_type,
# dataset1_name,
# dataset1_split,
# dataset1_text_column,
# dataset2_name,
# dataset2_split,
# dataset2_text_column,
# threshold,
# ],
# outputs=[status_output, result_output],
# )
# demo.launch()
|