import gradio as gr | |
from datasets import load_dataset | |
import numpy as np | |
from model2vec import StaticModel | |
from reach import Reach | |
from difflib import ndiff | |
# Load the model | |
model = StaticModel.from_pretrained("minishlab/M2V_base_output") | |
# Default parameters | |
default_dataset_name = "sst2" | |
default_dataset_split = "train" | |
default_text_column = "sentence" | |
default_threshold = 0.9 | |
def deduplicate_embeddings( | |
embeddings_a: np.ndarray, | |
embeddings_b: np.ndarray = None, | |
threshold: float = 0.9, | |
batch_size: int = 1024, | |
progress=None | |
) -> tuple[np.ndarray, dict[int, int]]: | |
"""Deduplicate embeddings within one dataset or across two datasets.""" | |
if embeddings_b is None: | |
reach = Reach(vectors=embeddings_a, items=[str(i) for i in range(len(embeddings_a))]) | |
duplicate_to_original = {} | |
results = reach.nearest_neighbor_threshold( | |
embeddings_a, threshold=threshold, batch_size=batch_size, show_progressbar=False | |
) | |
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=len(embeddings_a))): | |
for sim_idx, _ in similar_items: | |
sim_idx = int(sim_idx) | |
if sim_idx != i and sim_idx not in duplicate_to_original: | |
duplicate_to_original[sim_idx] = i | |
deduplicated_indices = set(range(len(embeddings_a))) - set(duplicate_to_original.keys()) | |
return deduplicated_indices, duplicate_to_original | |
else: | |
reach = Reach(vectors=embeddings_a, items=[str(i) for i in range(len(embeddings_a))]) | |
duplicate_indices_in_b = [] | |
duplicate_to_original = {} | |
results = reach.nearest_neighbor_threshold( | |
embeddings_b, threshold=threshold, batch_size=batch_size, show_progressbar=False | |
) | |
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=len(embeddings_b))): | |
if similar_items: | |
duplicate_indices_in_b.append(i) | |
duplicate_to_original[i] = int(similar_items[0][0]) | |
return duplicate_indices_in_b, duplicate_to_original | |
def display_word_differences(x: str, y: str) -> str: | |
"""Display word-level differences between two texts, avoiding Markdown issues.""" | |
diff = ndiff(x.split(), y.split()) | |
formatted_diff = "\n".join(word for word in diff if word.startswith(("+", "-"))) | |
return f"```\n{formatted_diff}\n```" | |
def load_dataset_texts(dataset_name: str, dataset_split: str, text_column: str) -> list[str]: | |
"""Load texts from a specified dataset and split.""" | |
ds = load_dataset(dataset_name, split=dataset_split) | |
return [example[text_column] for example in ds] | |
def perform_deduplication( | |
deduplication_type: str, | |
dataset1_name: str, | |
dataset1_split: str, | |
dataset1_text_column: str, | |
dataset2_name: str = "", | |
dataset2_split: str = "", | |
dataset2_text_column: str = "", | |
threshold: float = default_threshold, | |
progress: gr.Progress = gr.Progress(track_tqdm=True) | |
): | |
"""Perform deduplication on one or two datasets.""" | |
try: | |
threshold = float(threshold) | |
# Load and process Dataset 1 | |
yield "Loading Dataset 1...", "" | |
texts1 = load_dataset_texts(dataset1_name, dataset1_split, dataset1_text_column) | |
yield "Computing embeddings for Dataset 1...", "" | |
embeddings1 = model.encode(texts1, show_progressbar=True) | |
if deduplication_type == "Single dataset": | |
# Deduplicate within Dataset 1 | |
yield "Deduplicating within Dataset 1...", "" | |
deduplicated_indices, duplicate_mapping = deduplicate_embeddings( | |
embeddings1, threshold=threshold, progress=progress | |
) | |
num_duplicates = len(duplicate_mapping) | |
result_text = ( | |
f"**Total documents:** {len(texts1)}\n\n" | |
f"**Duplicates found:** {num_duplicates}\n\n" | |
f"**Unique documents after deduplication:** {len(deduplicated_indices)}\n\n" | |
) | |
if num_duplicates > 0: | |
result_text += "**Sample duplicates:**\n\n" | |
for dup_idx, orig_idx in list(duplicate_mapping.items())[:5]: | |
orig_text = texts1[orig_idx] | |
dup_text = texts1[dup_idx] | |
differences = display_word_differences(orig_text, dup_text) | |
result_text += ( | |
f"**Original:**\n{orig_text}\n\n" | |
f"**Duplicate:**\n{dup_text}\n\n" | |
f"**Differences:**\n{differences}\n" | |
+ "-" * 50 + "\n\n" | |
) | |
else: | |
result_text += "No duplicates found." | |
yield "Deduplication completed.", result_text | |
else: | |
# Load and process Dataset 2 | |
yield "Loading Dataset 2...", "" | |
texts2 = load_dataset_texts(dataset2_name, dataset2_split, dataset2_text_column) | |
yield "Computing embeddings for Dataset 2...", "" | |
embeddings2 = model.encode(texts2, show_progressbar=True) | |
# Deduplicate Dataset 2 against Dataset 1 | |
yield "Deduplicating Dataset 2 against Dataset 1...", "" | |
duplicate_indices, duplicate_mapping = deduplicate_embeddings( | |
embeddings1, embeddings_b=embeddings2, threshold=threshold, progress=progress | |
) | |
num_duplicates = len(duplicate_indices) | |
result_text = ( | |
f"**Total documents in {dataset2_name}/{dataset2_split}:** {len(texts2)}\n\n" | |
f"**Duplicates found in Dataset 2:** {num_duplicates}\n\n" | |
f"**Unique documents after deduplication:** {len(texts2) - num_duplicates}\n\n" | |
) | |
if num_duplicates > 0: | |
result_text += "**Sample duplicates from Dataset 2:**\n\n" | |
for idx in duplicate_indices[:5]: | |
orig_text = texts1[duplicate_mapping[idx]] | |
dup_text = texts2[idx] | |
differences = display_word_differences(orig_text, dup_text) | |
result_text += ( | |
f"**Original (Dataset 1):**\n{orig_text}\n\n" | |
f"**Duplicate (Dataset 2):**\n{dup_text}\n\n" | |
f"**Differences:**\n{differences}\n" | |
+ "-" * 50 + "\n\n" | |
) | |
else: | |
result_text += "No duplicates found." | |
yield "Deduplication completed.", result_text | |
except Exception as e: | |
yield f"An error occurred: {e}", "" | |
raise e | |
# Gradio app with stop button support | |
with gr.Blocks(css="#status_output { height: 50px; overflow: auto; }") as demo: | |
gr.Markdown("# Semantic Deduplication") | |
gr.Markdown(""" | |
This demo showcases a semantic deduplication process where we identify duplicate texts within a single dataset or across two datasets. | |
The deduplication is based on cosine similarity between the embeddings of the texts. | |
You can adjust the similarity threshold to control the strictness of the deduplication. | |
""") | |
deduplication_type = gr.Radio( | |
choices=["Single dataset", "Cross-dataset"], | |
label="Deduplication Type", | |
value="Single dataset", | |
) | |
with gr.Row(): | |
dataset1_name = gr.Textbox(value=default_dataset_name, label="Dataset 1 Name") | |
dataset1_split = gr.Textbox(value=default_dataset_split, label="Dataset 1 Split") | |
dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name") | |
dataset2_inputs = gr.Column(visible=False) | |
with dataset2_inputs: | |
gr.Markdown("### Dataset 2") | |
with gr.Row(): | |
dataset2_name = gr.Textbox(value=default_dataset_name, label="Dataset 2 Name") | |
dataset2_split = gr.Textbox(value=default_dataset_split, label="Dataset 2 Split") | |
dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name") | |
threshold = gr.Slider(0.0, 1.0, value=default_threshold, label="Similarity Threshold") | |
compute_button = gr.Button("Compute") | |
stop_button = gr.Button("Stop") | |
status_output = gr.Markdown(elem_id="status_output") | |
result_output = gr.Markdown() | |
def update_visibility(choice: str): | |
return gr.update(visible=choice == "Cross-dataset") | |
deduplication_type.change(update_visibility, inputs=deduplication_type, outputs=dataset2_inputs) | |
compute_button.click( | |
fn=perform_deduplication, | |
inputs=[ | |
deduplication_type, | |
dataset1_name, | |
dataset1_split, | |
dataset1_text_column, | |
dataset2_name, | |
dataset2_split, | |
dataset2_text_column, | |
threshold, | |
], | |
outputs=[status_output, result_output], | |
) | |
# Stop button functionality | |
stop_button.click(lambda: demo.stop(), None, None) | |
demo.launch() | |
# import gradio as gr | |
# from datasets import load_dataset | |
# import numpy as np | |
# from model2vec import StaticModel | |
# from reach import Reach | |
# from difflib import ndiff | |
# # Load the model | |
# model = StaticModel.from_pretrained("minishlab/M2V_base_output") | |
# # Default parameters | |
# default_dataset_name = "sst2" | |
# default_dataset_split = "train" | |
# default_text_column = "sentence" | |
# default_threshold = 0.9 | |
# def deduplicate_embeddings( | |
# embeddings_a: np.ndarray, | |
# embeddings_b: np.ndarray = None, | |
# threshold: float = 0.9, | |
# batch_size: int = 1024, | |
# progress=None | |
# ) -> tuple[np.ndarray, dict[int, int]]: | |
# """ | |
# Deduplicate embeddings within one dataset or across two datasets. | |
# :param embeddings_a: Embeddings of Dataset 1. | |
# :param embeddings_b: Optional, embeddings of Dataset 2. | |
# :param threshold: Similarity threshold for deduplication. | |
# :param batch_size: Batch size for similarity computation. | |
# :param progress: Gradio progress tracker for feedback. | |
# :return: Deduplicated indices and a mapping of removed indices to their original counterparts. | |
# """ | |
# if embeddings_b is None: | |
# reach = Reach(vectors=embeddings_a, items=[str(i) for i in range(len(embeddings_a))]) | |
# duplicate_to_original = {} | |
# results = reach.nearest_neighbor_threshold( | |
# embeddings_a, threshold=threshold, batch_size=batch_size, show_progressbar=False | |
# ) | |
# for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=len(embeddings_a))): | |
# for sim_idx, _ in similar_items: | |
# sim_idx = int(sim_idx) | |
# if sim_idx != i and sim_idx not in duplicate_to_original: | |
# duplicate_to_original[sim_idx] = i | |
# deduplicated_indices = set(range(len(embeddings_a))) - set(duplicate_to_original.keys()) | |
# return deduplicated_indices, duplicate_to_original | |
# else: | |
# reach = Reach(vectors=embeddings_a, items=[str(i) for i in range(len(embeddings_a))]) | |
# duplicate_indices_in_b = [] | |
# duplicate_to_original = {} | |
# results = reach.nearest_neighbor_threshold( | |
# embeddings_b, threshold=threshold, batch_size=batch_size, show_progressbar=False | |
# ) | |
# for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=len(embeddings_b))): | |
# if similar_items: | |
# duplicate_indices_in_b.append(i) | |
# duplicate_to_original[i] = int(similar_items[0][0]) | |
# return duplicate_indices_in_b, duplicate_to_original | |
# def display_word_differences(x: str, y: str) -> str: | |
# """ | |
# Display the word-level differences between two texts, formatted to avoid | |
# misinterpretation of Markdown syntax. | |
# :param x: First text. | |
# :param y: Second text. | |
# :return: A string showing word-level differences, wrapped in a code block. | |
# """ | |
# diff = ndiff(x.split(), y.split()) | |
# # Wrap differences in a code block to prevent interpretation as Markdown | |
# formatted_diff = "\n".join(word for word in diff if word.startswith(("+", "-"))) | |
# return f"```\n{formatted_diff}\n```" | |
# # def display_word_differences(x: str, y: str) -> str: | |
# # """ | |
# # Display the word-level differences between two texts. | |
# # :param x: First text. | |
# # :param y: Second text. | |
# # :return: A string showing word-level differences. | |
# # """ | |
# # diff = ndiff(x.split(), y.split()) | |
# # return " ".join(word for word in diff if word.startswith(("+", "-"))) | |
# def load_dataset_texts(dataset_name: str, dataset_split: str, text_column: str) -> list[str]: | |
# """ | |
# Load texts from a specified dataset and split. | |
# :param dataset_name: Name of the dataset. | |
# :param dataset_split: Split of the dataset (e.g., 'train', 'validation'). | |
# :param text_column: Name of the text column. | |
# :return: A list of texts from the dataset. | |
# """ | |
# ds = load_dataset(dataset_name, split=dataset_split) | |
# return [example[text_column] for example in ds] | |
# def perform_deduplication( | |
# deduplication_type: str, | |
# dataset1_name: str, | |
# dataset1_split: str, | |
# dataset1_text_column: str, | |
# dataset2_name: str = "", | |
# dataset2_split: str = "", | |
# dataset2_text_column: str = "", | |
# threshold: float = default_threshold, | |
# progress: gr.Progress = gr.Progress(track_tqdm=True) | |
# ): | |
# """ | |
# Perform deduplication on one or two datasets based on the deduplication type. | |
# :param deduplication_type: 'Single dataset' or 'Cross-dataset'. | |
# :param dataset1_name: Name of the first dataset. | |
# :param dataset1_split: Split of the first dataset. | |
# :param dataset1_text_column: Text column of the first dataset. | |
# :param dataset2_name: Optional, name of the second dataset (for cross-dataset deduplication). | |
# :param dataset2_split: Optional, split of the second dataset. | |
# :param dataset2_text_column: Optional, text column of the second dataset. | |
# :param threshold: Similarity threshold for deduplication. | |
# :param progress: Gradio progress tracker. | |
# :return: Status updates and result text for the Gradio interface. | |
# """ | |
# try: | |
# threshold = float(threshold) | |
# # Load and process Dataset 1 | |
# yield "Loading Dataset 1...", "" | |
# texts1 = load_dataset_texts(dataset1_name, dataset1_split, dataset1_text_column) | |
# yield "Computing embeddings for Dataset 1...", "" | |
# embeddings1 = model.encode(texts1, show_progressbar=True) | |
# if deduplication_type == "Single dataset": | |
# # Deduplicate within Dataset 1 | |
# yield "Deduplicating within Dataset 1...", "" | |
# deduplicated_indices, duplicate_mapping = deduplicate_embeddings( | |
# embeddings1, threshold=threshold, progress=progress | |
# ) | |
# num_duplicates = len(duplicate_mapping) | |
# result_text = ( | |
# f"**Total documents:** {len(texts1)}\n\n" | |
# f"**Duplicates found:** {num_duplicates}\n\n" | |
# f"**Unique documents after deduplication:** {len(deduplicated_indices)}\n\n" | |
# ) | |
# if num_duplicates > 0: | |
# result_text += "**Sample duplicates:**\n\n" | |
# for dup_idx, orig_idx in list(duplicate_mapping.items())[:5]: | |
# orig_text = texts1[orig_idx] | |
# dup_text = texts1[dup_idx] | |
# differences = display_word_differences(orig_text, dup_text) | |
# result_text += ( | |
# f"**Original:**\n{orig_text}\n\n" | |
# f"**Duplicate:**\n{dup_text}\n\n" | |
# f"**Differences:**\n{differences}\n" | |
# + "-" * 50 + "\n\n" | |
# ) | |
# else: | |
# result_text += "No duplicates found." | |
# yield "Deduplication completed.", result_text | |
# else: | |
# # Load and process Dataset 2 | |
# yield "Loading Dataset 2...", "" | |
# texts2 = load_dataset_texts(dataset2_name, dataset2_split, dataset2_text_column) | |
# yield "Computing embeddings for Dataset 2...", "" | |
# embeddings2 = model.encode(texts2, show_progressbar=True) | |
# # Deduplicate Dataset 2 against Dataset 1 | |
# yield "Deduplicating Dataset 2 against Dataset 1...", "" | |
# duplicate_indices, duplicate_mapping = deduplicate_embeddings( | |
# embeddings1, embeddings_b=embeddings2, threshold=threshold, progress=progress | |
# ) | |
# num_duplicates = len(duplicate_indices) | |
# result_text = ( | |
# f"**Total documents in {dataset2_name}/{dataset2_split}:** {len(texts2)}\n\n" | |
# f"**Duplicates found in Dataset 2:** {num_duplicates}\n\n" | |
# f"**Unique documents after deduplication:** {len(texts2) - num_duplicates}\n\n" | |
# ) | |
# if num_duplicates > 0: | |
# result_text += "**Sample duplicates from Dataset 2:**\n\n" | |
# for idx in duplicate_indices[:5]: | |
# orig_text = texts1[duplicate_mapping[idx]] | |
# dup_text = texts2[idx] | |
# differences = display_word_differences(orig_text, dup_text) | |
# result_text += ( | |
# f"**Original (Dataset 1):**\n{orig_text}\n\n" | |
# f"**Duplicate (Dataset 2):**\n{dup_text}\n\n" | |
# f"**Differences:**\n{differences}\n" | |
# + "-" * 50 + "\n\n" | |
# ) | |
# else: | |
# result_text += "No duplicates found." | |
# yield "Deduplication completed.", result_text | |
# except Exception as e: | |
# yield f"An error occurred: {e}", "" | |
# raise e | |
# with gr.Blocks(css="#status_output { height: 50px; overflow: auto; }") as demo: | |
# gr.Markdown("# Semantic Deduplication") | |
# gr.Markdown(""" | |
# This demo showcases semantic deduplication using Model2Vec for HuggingFace datasets. | |
# It can be used to identify duplicate texts within a single dataset or across two datasets. | |
# You can adjust the similarity threshold to control the strictness of the deduplication.\n | |
# NOTE: this demo runs on a free CPU backend, so it may be slow for large datasets. For faster results, please run the code locally. | |
# """) | |
# deduplication_type = gr.Radio( | |
# choices=["Single dataset", "Cross-dataset"], | |
# label="Deduplication Type", | |
# value="Single dataset", | |
# ) | |
# with gr.Row(): | |
# dataset1_name = gr.Textbox(value=default_dataset_name, label="Dataset 1 Name") | |
# dataset1_split = gr.Textbox(value=default_dataset_split, label="Dataset 1 Split") | |
# dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name") | |
# dataset2_inputs = gr.Column(visible=False) | |
# with dataset2_inputs: | |
# gr.Markdown("### Dataset 2") | |
# with gr.Row(): | |
# dataset2_name = gr.Textbox(value=default_dataset_name, label="Dataset 2 Name") | |
# dataset2_split = gr.Textbox(value=default_dataset_split, label="Dataset 2 Split") | |
# dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name") | |
# threshold = gr.Slider(0.0, 1.0, value=default_threshold, label="Similarity Threshold") | |
# compute_button = gr.Button("Compute") | |
# status_output = gr.Markdown(elem_id="status_output") | |
# result_output = gr.Markdown() | |
# def update_visibility(choice: str): | |
# return gr.update(visible=choice == "Cross-dataset") | |
# deduplication_type.change(update_visibility, inputs=deduplication_type, outputs=dataset2_inputs) | |
# compute_button.click( | |
# fn=perform_deduplication, | |
# inputs=[ | |
# deduplication_type, | |
# dataset1_name, | |
# dataset1_split, | |
# dataset1_text_column, | |
# dataset2_name, | |
# dataset2_split, | |
# dataset2_text_column, | |
# threshold, | |
# ], | |
# outputs=[status_output, result_output], | |
# ) | |
# demo.launch() | |