Spaces:
Runtime error
Runtime error
Updated app with code for deduplication
Browse files
app.py
CHANGED
@@ -32,7 +32,7 @@ def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int
|
|
32 |
embedding_matrix,
|
33 |
threshold=threshold,
|
34 |
batch_size=batch_size,
|
35 |
-
show_progressbar=
|
36 |
)
|
37 |
|
38 |
# Process duplicates
|
@@ -62,7 +62,7 @@ def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix
|
|
62 |
embedding_matrix_2,
|
63 |
threshold=threshold,
|
64 |
batch_size=batch_size,
|
65 |
-
show_progressbar=
|
66 |
)
|
67 |
|
68 |
# Process duplicates
|
@@ -111,11 +111,8 @@ def perform_deduplication(
|
|
111 |
texts = [example[dataset1_text_column] for example in ds]
|
112 |
|
113 |
# Compute embeddings
|
114 |
-
embedding_matrix = model.encode(texts, show_progressbar=
|
115 |
|
116 |
-
# Show progress bar for embedding computation
|
117 |
-
embedding_matrix = progress.tqdm(embedding_matrix, desc="Computing embeddings")
|
118 |
-
|
119 |
# Deduplicate
|
120 |
deduplicated_indices, duplicate_to_original_mapping = deduplicate(embedding_matrix, threshold, progress=progress)
|
121 |
|
@@ -160,12 +157,8 @@ def perform_deduplication(
|
|
160 |
texts2 = [example[dataset2_text_column] for example in ds2]
|
161 |
|
162 |
# Compute embeddings
|
163 |
-
embedding_matrix1 = model.encode(texts1, show_progressbar=
|
164 |
-
embedding_matrix2 = model.encode(texts2, show_progressbar=
|
165 |
-
|
166 |
-
# Show progress bar for embedding computation
|
167 |
-
embedding_matrix1 = progress.tqdm(embedding_matrix1, desc="Computing embeddings for Dataset 1")
|
168 |
-
embedding_matrix2 = progress.tqdm(embedding_matrix2, desc="Computing embeddings for Dataset 2")
|
169 |
|
170 |
# Deduplicate across datasets
|
171 |
duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(embedding_matrix1, embedding_matrix2, threshold, progress=progress)
|
@@ -263,6 +256,271 @@ with gr.Blocks() as demo:
|
|
263 |
demo.launch()
|
264 |
|
265 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
# import gradio as gr
|
267 |
# from datasets import load_dataset
|
268 |
# import numpy as np
|
|
|
32 |
embedding_matrix,
|
33 |
threshold=threshold,
|
34 |
batch_size=batch_size,
|
35 |
+
show_progressbar=True # Allow internal progress bar
|
36 |
)
|
37 |
|
38 |
# Process duplicates
|
|
|
62 |
embedding_matrix_2,
|
63 |
threshold=threshold,
|
64 |
batch_size=batch_size,
|
65 |
+
show_progressbar=True # Allow internal progress bar
|
66 |
)
|
67 |
|
68 |
# Process duplicates
|
|
|
111 |
texts = [example[dataset1_text_column] for example in ds]
|
112 |
|
113 |
# Compute embeddings
|
114 |
+
embedding_matrix = model.encode(texts, show_progressbar=True) # Enable internal progress bar
|
115 |
|
|
|
|
|
|
|
116 |
# Deduplicate
|
117 |
deduplicated_indices, duplicate_to_original_mapping = deduplicate(embedding_matrix, threshold, progress=progress)
|
118 |
|
|
|
157 |
texts2 = [example[dataset2_text_column] for example in ds2]
|
158 |
|
159 |
# Compute embeddings
|
160 |
+
embedding_matrix1 = model.encode(texts1, show_progressbar=True) # Enable internal progress bar
|
161 |
+
embedding_matrix2 = model.encode(texts2, show_progressbar=True) # Enable internal progress bar
|
|
|
|
|
|
|
|
|
162 |
|
163 |
# Deduplicate across datasets
|
164 |
duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(embedding_matrix1, embedding_matrix2, threshold, progress=progress)
|
|
|
256 |
demo.launch()
|
257 |
|
258 |
|
259 |
+
# import gradio as gr
|
260 |
+
# from datasets import load_dataset
|
261 |
+
# import numpy as np
|
262 |
+
# from model2vec import StaticModel
|
263 |
+
# from reach import Reach
|
264 |
+
# from difflib import ndiff
|
265 |
+
# import sys
|
266 |
+
# import tqdm
|
267 |
+
|
268 |
+
# # Load the model at startup
|
269 |
+
# model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
270 |
+
|
271 |
+
# # Load the default datasets at startup
|
272 |
+
# default_dataset1_name = "ag_news"
|
273 |
+
# default_dataset1_split = "train"
|
274 |
+
# default_dataset2_name = "ag_news"
|
275 |
+
# default_dataset2_split = "test"
|
276 |
+
|
277 |
+
# ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
|
278 |
+
# ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
|
279 |
+
|
280 |
+
# def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[np.ndarray, dict[int, int]]:
|
281 |
+
# """
|
282 |
+
# Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
|
283 |
+
# """
|
284 |
+
# reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
|
285 |
+
|
286 |
+
# deduplicated_indices = set(range(len(embedding_matrix)))
|
287 |
+
# duplicate_to_original_mapping = {}
|
288 |
+
|
289 |
+
# results = reach.nearest_neighbor_threshold(
|
290 |
+
# embedding_matrix,
|
291 |
+
# threshold=threshold,
|
292 |
+
# batch_size=batch_size,
|
293 |
+
# show_progressbar=False # Disable internal progress bar
|
294 |
+
# )
|
295 |
+
|
296 |
+
# # Process duplicates
|
297 |
+
# for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates")):
|
298 |
+
# if i not in deduplicated_indices:
|
299 |
+
# continue
|
300 |
+
|
301 |
+
# similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
|
302 |
+
|
303 |
+
# for sim_idx in similar_indices:
|
304 |
+
# if sim_idx in deduplicated_indices:
|
305 |
+
# deduplicated_indices.remove(sim_idx)
|
306 |
+
# duplicate_to_original_mapping[sim_idx] = i
|
307 |
+
|
308 |
+
# return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
|
309 |
+
|
310 |
+
# def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix_2: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[list[int], dict[int, int]]:
|
311 |
+
# """
|
312 |
+
# Deduplicate embeddings across two datasets and return the indices of duplicates between them.
|
313 |
+
# """
|
314 |
+
# reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])
|
315 |
+
|
316 |
+
# duplicate_indices_in_test = []
|
317 |
+
# duplicate_to_original_mapping = {}
|
318 |
+
|
319 |
+
# results = reach.nearest_neighbor_threshold(
|
320 |
+
# embedding_matrix_2,
|
321 |
+
# threshold=threshold,
|
322 |
+
# batch_size=batch_size,
|
323 |
+
# show_progressbar=False # Disable internal progress bar
|
324 |
+
# )
|
325 |
+
|
326 |
+
# # Process duplicates
|
327 |
+
# for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates across datasets")):
|
328 |
+
# similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
|
329 |
+
|
330 |
+
# if similar_indices:
|
331 |
+
# duplicate_indices_in_test.append(i)
|
332 |
+
# duplicate_to_original_mapping[i] = similar_indices[0]
|
333 |
+
|
334 |
+
# return duplicate_indices_in_test, duplicate_to_original_mapping
|
335 |
+
|
336 |
+
# def display_word_differences(x: str, y: str) -> str:
|
337 |
+
# diff = ndiff(x.split(), y.split())
|
338 |
+
# return " ".join([word for word in diff if word.startswith(('+', '-'))])
|
339 |
+
|
340 |
+
# def perform_deduplication(
|
341 |
+
# deduplication_type,
|
342 |
+
# dataset1_name,
|
343 |
+
# dataset1_split,
|
344 |
+
# dataset1_text_column,
|
345 |
+
# dataset2_name="",
|
346 |
+
# dataset2_split="",
|
347 |
+
# dataset2_text_column="",
|
348 |
+
# threshold=0.8,
|
349 |
+
# progress=gr.Progress(track_tqdm=True)
|
350 |
+
# ):
|
351 |
+
# # Monkey-patch tqdm
|
352 |
+
# original_tqdm = tqdm.tqdm
|
353 |
+
# tqdm.tqdm = progress.tqdm
|
354 |
+
# sys.modules['tqdm'].tqdm = progress.tqdm
|
355 |
+
# sys.modules['tqdm.auto'].tqdm = progress.tqdm
|
356 |
+
|
357 |
+
# try:
|
358 |
+
# # Convert threshold to float
|
359 |
+
# threshold = float(threshold)
|
360 |
+
|
361 |
+
# if deduplication_type == "Single dataset":
|
362 |
+
# # Check if the dataset is the default one
|
363 |
+
# if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
364 |
+
# ds = ds_default1
|
365 |
+
# else:
|
366 |
+
# ds = load_dataset(dataset1_name, split=dataset1_split)
|
367 |
+
|
368 |
+
# # Extract texts
|
369 |
+
# texts = [example[dataset1_text_column] for example in ds]
|
370 |
+
|
371 |
+
# # Compute embeddings
|
372 |
+
# embedding_matrix = model.encode(texts, show_progressbar=False) # Disable internal progress bar
|
373 |
+
|
374 |
+
# # Show progress bar for embedding computation
|
375 |
+
# embedding_matrix = progress.tqdm(embedding_matrix, desc="Computing embeddings")
|
376 |
+
|
377 |
+
# # Deduplicate
|
378 |
+
# deduplicated_indices, duplicate_to_original_mapping = deduplicate(embedding_matrix, threshold, progress=progress)
|
379 |
+
|
380 |
+
# # Prepare the results
|
381 |
+
# num_duplicates = len(duplicate_to_original_mapping)
|
382 |
+
# num_total = len(texts)
|
383 |
+
# num_deduplicated = len(deduplicated_indices)
|
384 |
+
|
385 |
+
# result_text = f"**Total documents:** {num_total}\n"
|
386 |
+
# result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
387 |
+
# result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
388 |
+
|
389 |
+
# # Show deduplicated examples
|
390 |
+
# result_text += "**Examples of duplicates found:**\n\n"
|
391 |
+
# num_examples = min(5, num_duplicates)
|
392 |
+
# for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
|
393 |
+
# original_text = texts[original_idx]
|
394 |
+
# duplicate_text = texts[duplicate_idx]
|
395 |
+
# differences = display_word_differences(original_text, duplicate_text)
|
396 |
+
# result_text += f"**Original text:**\n{original_text}\n\n"
|
397 |
+
# result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
|
398 |
+
# result_text += f"**Differences:**\n{differences}\n"
|
399 |
+
# result_text += "-" * 50 + "\n\n"
|
400 |
+
|
401 |
+
# return result_text
|
402 |
+
|
403 |
+
# elif deduplication_type == "Cross-dataset":
|
404 |
+
# # Dataset 1
|
405 |
+
# if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
406 |
+
# ds1 = ds_default1
|
407 |
+
# else:
|
408 |
+
# ds1 = load_dataset(dataset1_name, split=dataset1_split)
|
409 |
+
|
410 |
+
# # Dataset 2
|
411 |
+
# if dataset2_name == default_dataset2_name and dataset2_split == default_dataset2_split:
|
412 |
+
# ds2 = ds_default2
|
413 |
+
# else:
|
414 |
+
# ds2 = load_dataset(dataset2_name, split=dataset2_split)
|
415 |
+
|
416 |
+
# # Extract texts
|
417 |
+
# texts1 = [example[dataset1_text_column] for example in ds1]
|
418 |
+
# texts2 = [example[dataset2_text_column] for example in ds2]
|
419 |
+
|
420 |
+
# # Compute embeddings
|
421 |
+
# embedding_matrix1 = model.encode(texts1, show_progressbar=False) # Disable internal progress bar
|
422 |
+
# embedding_matrix2 = model.encode(texts2, show_progressbar=False) # Disable internal progress bar
|
423 |
+
|
424 |
+
# # Show progress bar for embedding computation
|
425 |
+
# embedding_matrix1 = progress.tqdm(embedding_matrix1, desc="Computing embeddings for Dataset 1")
|
426 |
+
# embedding_matrix2 = progress.tqdm(embedding_matrix2, desc="Computing embeddings for Dataset 2")
|
427 |
+
|
428 |
+
# # Deduplicate across datasets
|
429 |
+
# duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(embedding_matrix1, embedding_matrix2, threshold, progress=progress)
|
430 |
+
|
431 |
+
# num_duplicates = len(duplicate_indices_in_ds2)
|
432 |
+
# num_total_ds2 = len(texts2)
|
433 |
+
# num_unique_ds2 = num_total_ds2 - num_duplicates
|
434 |
+
|
435 |
+
# result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
|
436 |
+
# result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
|
437 |
+
# result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
|
438 |
+
|
439 |
+
# # Show deduplicated examples
|
440 |
+
# result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
|
441 |
+
# num_examples = min(5, num_duplicates)
|
442 |
+
# for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
|
443 |
+
# original_idx = duplicate_to_original_mapping[duplicate_idx]
|
444 |
+
# original_text = texts1[original_idx]
|
445 |
+
# duplicate_text = texts2[duplicate_idx]
|
446 |
+
# differences = display_word_differences(original_text, duplicate_text)
|
447 |
+
# result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
|
448 |
+
# result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
|
449 |
+
# result_text += f"**Differences:**\n{differences}\n"
|
450 |
+
# result_text += "-" * 50 + "\n\n"
|
451 |
+
|
452 |
+
# return result_text
|
453 |
+
|
454 |
+
# finally:
|
455 |
+
# # Restore original tqdm
|
456 |
+
# tqdm.tqdm = original_tqdm
|
457 |
+
# sys.modules['tqdm'].tqdm = original_tqdm
|
458 |
+
# sys.modules['tqdm.auto'].tqdm = original_tqdm
|
459 |
+
|
460 |
+
# with gr.Blocks() as demo:
|
461 |
+
# gr.Markdown("# Semantic Deduplication")
|
462 |
+
|
463 |
+
# deduplication_type = gr.Radio(
|
464 |
+
# choices=["Single dataset", "Cross-dataset"],
|
465 |
+
# label="Deduplication Type",
|
466 |
+
# value="Single dataset"
|
467 |
+
# )
|
468 |
+
|
469 |
+
# with gr.Row():
|
470 |
+
# dataset1_name = gr.Textbox(value="ag_news", label="Dataset 1 Name")
|
471 |
+
# dataset1_split = gr.Textbox(value="train", label="Dataset 1 Split")
|
472 |
+
# dataset1_text_column = gr.Textbox(value="text", label="Text Column Name")
|
473 |
+
|
474 |
+
# dataset2_inputs = gr.Column(visible=False)
|
475 |
+
# with dataset2_inputs:
|
476 |
+
# gr.Markdown("### Dataset 2")
|
477 |
+
# with gr.Row():
|
478 |
+
# dataset2_name = gr.Textbox(value="ag_news", label="Dataset 2 Name")
|
479 |
+
# dataset2_split = gr.Textbox(value="test", label="Dataset 2 Split")
|
480 |
+
# dataset2_text_column = gr.Textbox(value="text", label="Text Column Name")
|
481 |
+
|
482 |
+
# threshold = gr.Slider(
|
483 |
+
# minimum=0.0,
|
484 |
+
# maximum=1.0,
|
485 |
+
# value=0.8,
|
486 |
+
# label="Similarity Threshold"
|
487 |
+
# )
|
488 |
+
|
489 |
+
# compute_button = gr.Button("Compute")
|
490 |
+
|
491 |
+
# output = gr.Markdown()
|
492 |
+
|
493 |
+
# # Function to update the visibility of dataset2_inputs
|
494 |
+
# def update_visibility(deduplication_type_value):
|
495 |
+
# if deduplication_type_value == "Cross-dataset":
|
496 |
+
# return gr.update(visible=True)
|
497 |
+
# else:
|
498 |
+
# return gr.update(visible=False)
|
499 |
+
|
500 |
+
# deduplication_type.change(
|
501 |
+
# update_visibility,
|
502 |
+
# inputs=deduplication_type,
|
503 |
+
# outputs=dataset2_inputs
|
504 |
+
# )
|
505 |
+
|
506 |
+
# compute_button.click(
|
507 |
+
# fn=perform_deduplication,
|
508 |
+
# inputs=[
|
509 |
+
# deduplication_type,
|
510 |
+
# dataset1_name,
|
511 |
+
# dataset1_split,
|
512 |
+
# dataset1_text_column,
|
513 |
+
# dataset2_name,
|
514 |
+
# dataset2_split,
|
515 |
+
# dataset2_text_column,
|
516 |
+
# threshold
|
517 |
+
# ],
|
518 |
+
# outputs=output
|
519 |
+
# )
|
520 |
+
|
521 |
+
# demo.launch()
|
522 |
+
|
523 |
+
|
524 |
# import gradio as gr
|
525 |
# from datasets import load_dataset
|
526 |
# import numpy as np
|