Spaces:
Runtime error
Runtime error
Updated app with code for deduplication
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@ from reach import Reach
|
|
6 |
from difflib import ndiff
|
7 |
import sys
|
8 |
import tqdm
|
|
|
9 |
|
10 |
# Load the model at startup
|
11 |
model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
@@ -26,13 +27,13 @@ def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int
|
|
26 |
"""
|
27 |
Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
|
28 |
"""
|
29 |
-
#
|
30 |
reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
|
31 |
|
32 |
deduplicated_indices = set(range(len(embedding_matrix)))
|
33 |
duplicate_to_original_mapping = {}
|
34 |
|
35 |
-
#
|
36 |
results = reach.nearest_neighbor_threshold(
|
37 |
embedding_matrix,
|
38 |
threshold=threshold,
|
@@ -40,7 +41,7 @@ def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int
|
|
40 |
show_progressbar=True # Allow internal progress bar
|
41 |
)
|
42 |
|
43 |
-
#
|
44 |
for i, similar_items in enumerate(results):
|
45 |
if i not in deduplicated_indices:
|
46 |
continue
|
@@ -58,13 +59,13 @@ def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix
|
|
58 |
"""
|
59 |
Deduplicate embeddings across two datasets and return the indices of duplicates between them.
|
60 |
"""
|
61 |
-
#
|
62 |
reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])
|
63 |
|
64 |
duplicate_indices_in_test = []
|
65 |
duplicate_to_original_mapping = {}
|
66 |
|
67 |
-
#
|
68 |
results = reach.nearest_neighbor_threshold(
|
69 |
embedding_matrix_2,
|
70 |
threshold=threshold,
|
@@ -72,7 +73,7 @@ def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix
|
|
72 |
show_progressbar=True # Allow internal progress bar
|
73 |
)
|
74 |
|
75 |
-
#
|
76 |
for i, similar_items in enumerate(results):
|
77 |
similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
|
78 |
|
@@ -103,9 +104,9 @@ def perform_deduplication(
|
|
103 |
super().__init__(*args, **kwargs)
|
104 |
|
105 |
# Copy module-level attributes from original tqdm module
|
106 |
-
TqdmWrapper.format_interval = staticmethod(
|
107 |
-
TqdmWrapper.format_num = staticmethod(
|
108 |
-
TqdmWrapper.format_sizeof = staticmethod(
|
109 |
|
110 |
# Monkey-patch tqdm.tqdm with our wrapper
|
111 |
original_tqdm_tqdm = tqdm.tqdm
|
@@ -313,12 +314,12 @@ with gr.Blocks() as demo:
|
|
313 |
compute_button.click(
|
314 |
fn=perform_deduplication,
|
315 |
inputs=[
|
316 |
-
deduplication_type,
|
317 |
-
dataset1_name,
|
318 |
-
dataset1_split,
|
319 |
dataset1_text_column,
|
320 |
-
dataset2_name,
|
321 |
-
dataset2_split,
|
322 |
dataset2_text_column,
|
323 |
threshold
|
324 |
],
|
@@ -328,6 +329,7 @@ with gr.Blocks() as demo:
|
|
328 |
demo.launch()
|
329 |
|
330 |
|
|
|
331 |
# import gradio as gr
|
332 |
# from datasets import load_dataset
|
333 |
# import numpy as np
|
|
|
6 |
from difflib import ndiff
|
7 |
import sys
|
8 |
import tqdm
|
9 |
+
from tqdm.utils import format_interval, format_num, format_sizeof
|
10 |
|
11 |
# Load the model at startup
|
12 |
model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
|
|
27 |
"""
|
28 |
Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
|
29 |
"""
|
30 |
+
# Building the index
|
31 |
reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
|
32 |
|
33 |
deduplicated_indices = set(range(len(embedding_matrix)))
|
34 |
duplicate_to_original_mapping = {}
|
35 |
|
36 |
+
# Finding nearest neighbors
|
37 |
results = reach.nearest_neighbor_threshold(
|
38 |
embedding_matrix,
|
39 |
threshold=threshold,
|
|
|
41 |
show_progressbar=True # Allow internal progress bar
|
42 |
)
|
43 |
|
44 |
+
# Processing duplicates
|
45 |
for i, similar_items in enumerate(results):
|
46 |
if i not in deduplicated_indices:
|
47 |
continue
|
|
|
59 |
"""
|
60 |
Deduplicate embeddings across two datasets and return the indices of duplicates between them.
|
61 |
"""
|
62 |
+
# Building the index from Dataset 1
|
63 |
reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])
|
64 |
|
65 |
duplicate_indices_in_test = []
|
66 |
duplicate_to_original_mapping = {}
|
67 |
|
68 |
+
# Finding nearest neighbors between datasets
|
69 |
results = reach.nearest_neighbor_threshold(
|
70 |
embedding_matrix_2,
|
71 |
threshold=threshold,
|
|
|
73 |
show_progressbar=True # Allow internal progress bar
|
74 |
)
|
75 |
|
76 |
+
# Processing duplicates
|
77 |
for i, similar_items in enumerate(results):
|
78 |
similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
|
79 |
|
|
|
104 |
super().__init__(*args, **kwargs)
|
105 |
|
106 |
# Copy module-level attributes from original tqdm module
|
107 |
+
TqdmWrapper.format_interval = staticmethod(format_interval)
|
108 |
+
TqdmWrapper.format_num = staticmethod(format_num)
|
109 |
+
TqdmWrapper.format_sizeof = staticmethod(format_sizeof)
|
110 |
|
111 |
# Monkey-patch tqdm.tqdm with our wrapper
|
112 |
original_tqdm_tqdm = tqdm.tqdm
|
|
|
314 |
compute_button.click(
|
315 |
fn=perform_deduplication,
|
316 |
inputs=[
|
317 |
+
deduplication_type,
|
318 |
+
dataset1_name,
|
319 |
+
dataset1_split,
|
320 |
dataset1_text_column,
|
321 |
+
dataset2_name,
|
322 |
+
dataset2_split,
|
323 |
dataset2_text_column,
|
324 |
threshold
|
325 |
],
|
|
|
329 |
demo.launch()
|
330 |
|
331 |
|
332 |
+
|
333 |
# import gradio as gr
|
334 |
# from datasets import load_dataset
|
335 |
# import numpy as np
|