Updates
Browse files
app.py
CHANGED
@@ -248,747 +248,3 @@ with gr.Blocks(css="#status_output { height: 50px; overflow: auto; }") as demo:
|
|
248 |
|
249 |
|
250 |
demo.launch()
|
251 |
-
|
252 |
-
# import gradio as gr
|
253 |
-
# from datasets import load_dataset
|
254 |
-
# import numpy as np
|
255 |
-
# from model2vec import StaticModel
|
256 |
-
# from reach import Reach
|
257 |
-
# from difflib import ndiff
|
258 |
-
|
259 |
-
# # Load the model
|
260 |
-
# model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
261 |
-
|
262 |
-
# # Default parameters
|
263 |
-
# default_dataset_name = "sst2"
|
264 |
-
# default_dataset_split = "train"
|
265 |
-
# default_text_column = "sentence"
|
266 |
-
# default_threshold = 0.9
|
267 |
-
|
268 |
-
# def deduplicate_embeddings(
|
269 |
-
# embeddings_a: np.ndarray,
|
270 |
-
# embeddings_b: np.ndarray = None,
|
271 |
-
# threshold: float = 0.9,
|
272 |
-
# batch_size: int = 1024,
|
273 |
-
# progress=None
|
274 |
-
# ) -> tuple[np.ndarray, dict[int, int]]:
|
275 |
-
# """
|
276 |
-
# Deduplicate embeddings within one dataset or across two datasets.
|
277 |
-
|
278 |
-
# :param embeddings_a: Embeddings of Dataset 1.
|
279 |
-
# :param embeddings_b: Optional, embeddings of Dataset 2.
|
280 |
-
# :param threshold: Similarity threshold for deduplication.
|
281 |
-
# :param batch_size: Batch size for similarity computation.
|
282 |
-
# :param progress: Gradio progress tracker for feedback.
|
283 |
-
# :return: Deduplicated indices and a mapping of removed indices to their original counterparts.
|
284 |
-
# """
|
285 |
-
# if embeddings_b is None:
|
286 |
-
# reach = Reach(vectors=embeddings_a, items=[str(i) for i in range(len(embeddings_a))])
|
287 |
-
# duplicate_to_original = {}
|
288 |
-
# results = reach.nearest_neighbor_threshold(
|
289 |
-
# embeddings_a, threshold=threshold, batch_size=batch_size, show_progressbar=False
|
290 |
-
# )
|
291 |
-
# for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=len(embeddings_a))):
|
292 |
-
# for sim_idx, _ in similar_items:
|
293 |
-
# sim_idx = int(sim_idx)
|
294 |
-
# if sim_idx != i and sim_idx not in duplicate_to_original:
|
295 |
-
# duplicate_to_original[sim_idx] = i
|
296 |
-
# deduplicated_indices = set(range(len(embeddings_a))) - set(duplicate_to_original.keys())
|
297 |
-
# return deduplicated_indices, duplicate_to_original
|
298 |
-
# else:
|
299 |
-
# reach = Reach(vectors=embeddings_a, items=[str(i) for i in range(len(embeddings_a))])
|
300 |
-
# duplicate_indices_in_b = []
|
301 |
-
# duplicate_to_original = {}
|
302 |
-
# results = reach.nearest_neighbor_threshold(
|
303 |
-
# embeddings_b, threshold=threshold, batch_size=batch_size, show_progressbar=False
|
304 |
-
# )
|
305 |
-
# for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=len(embeddings_b))):
|
306 |
-
# if similar_items:
|
307 |
-
# duplicate_indices_in_b.append(i)
|
308 |
-
# duplicate_to_original[i] = int(similar_items[0][0])
|
309 |
-
# return duplicate_indices_in_b, duplicate_to_original
|
310 |
-
|
311 |
-
# def display_word_differences(x: str, y: str) -> str:
|
312 |
-
# """
|
313 |
-
# Display the word-level differences between two texts, formatted to avoid
|
314 |
-
# misinterpretation of Markdown syntax.
|
315 |
-
|
316 |
-
# :param x: First text.
|
317 |
-
# :param y: Second text.
|
318 |
-
# :return: A string showing word-level differences, wrapped in a code block.
|
319 |
-
# """
|
320 |
-
# diff = ndiff(x.split(), y.split())
|
321 |
-
# formatted_diff = "\n".join(word for word in diff if word.startswith(("+", "-")))
|
322 |
-
# return f"```\n{formatted_diff}\n```"
|
323 |
-
|
324 |
-
# def load_dataset_texts(dataset_name: str, dataset_split: str, text_column: str) -> list[str]:
|
325 |
-
# """
|
326 |
-
# Load texts from a specified dataset and split.
|
327 |
-
|
328 |
-
# :param dataset_name: Name of the dataset.
|
329 |
-
# :param dataset_split: Split of the dataset (e.g., 'train', 'validation').
|
330 |
-
# :param text_column: Name of the text column.
|
331 |
-
# :return: A list of texts from the dataset.
|
332 |
-
# """
|
333 |
-
# ds = load_dataset(dataset_name, split=dataset_split)
|
334 |
-
# return [example[text_column] for example in ds]
|
335 |
-
|
336 |
-
# def perform_deduplication(
|
337 |
-
# deduplication_type: str,
|
338 |
-
# dataset1_name: str,
|
339 |
-
# dataset1_split: str,
|
340 |
-
# dataset1_text_column: str,
|
341 |
-
# dataset2_name: str = "",
|
342 |
-
# dataset2_split: str = "",
|
343 |
-
# dataset2_text_column: str = "",
|
344 |
-
# threshold: float = default_threshold,
|
345 |
-
# progress: gr.Progress = gr.Progress(track_tqdm=True)
|
346 |
-
# ):
|
347 |
-
# """
|
348 |
-
# Perform deduplication on one or two datasets based on the deduplication type.
|
349 |
-
|
350 |
-
# :param deduplication_type: 'Single dataset' or 'Cross-dataset'.
|
351 |
-
# :param dataset1_name: Name of the first dataset.
|
352 |
-
# :param dataset1_split: Split of the first dataset.
|
353 |
-
# :param dataset1_text_column: Text column of the first dataset.
|
354 |
-
# :param dataset2_name: Optional, name of the second dataset (for cross-dataset deduplication).
|
355 |
-
# :param dataset2_split: Optional, split of the second dataset.
|
356 |
-
# :param dataset2_text_column: Optional, text column of the second dataset.
|
357 |
-
# :param threshold: Similarity threshold for deduplication.
|
358 |
-
# :param progress: Gradio progress tracker.
|
359 |
-
# :return: Status updates and result text for the Gradio interface.
|
360 |
-
# """
|
361 |
-
# try:
|
362 |
-
# threshold = float(threshold)
|
363 |
-
|
364 |
-
# # Load and process Dataset 1
|
365 |
-
# yield "Loading Dataset 1...", ""
|
366 |
-
# texts1 = load_dataset_texts(dataset1_name, dataset1_split, dataset1_text_column)
|
367 |
-
# yield "Computing embeddings for Dataset 1...", ""
|
368 |
-
# embeddings1 = model.encode(texts1, show_progressbar=True)
|
369 |
-
|
370 |
-
# if deduplication_type == "Single dataset":
|
371 |
-
# # Deduplicate within Dataset 1
|
372 |
-
# yield "Deduplicating within Dataset 1...", ""
|
373 |
-
# deduplicated_indices, duplicate_mapping = deduplicate_embeddings(
|
374 |
-
# embeddings1, threshold=threshold, progress=progress
|
375 |
-
# )
|
376 |
-
|
377 |
-
# num_duplicates = len(duplicate_mapping)
|
378 |
-
# result_text = (
|
379 |
-
# f"**Total documents:** {len(texts1)}\n\n"
|
380 |
-
# f"**Duplicates found:** {num_duplicates}\n\n"
|
381 |
-
# f"**Unique documents after deduplication:** {len(deduplicated_indices)}\n\n"
|
382 |
-
# )
|
383 |
-
|
384 |
-
# if num_duplicates > 0:
|
385 |
-
# result_text += "**Sample duplicates:**\n\n"
|
386 |
-
# for dup_idx, orig_idx in list(duplicate_mapping.items())[:5]:
|
387 |
-
# orig_text = texts1[orig_idx]
|
388 |
-
# dup_text = texts1[dup_idx]
|
389 |
-
# differences = display_word_differences(orig_text, dup_text)
|
390 |
-
# result_text += (
|
391 |
-
# f"**Original:**\n{orig_text}\n\n"
|
392 |
-
# f"**Duplicate:**\n{dup_text}\n\n"
|
393 |
-
# f"**Differences:**\n{differences}\n"
|
394 |
-
# + "-" * 50 + "\n\n"
|
395 |
-
# )
|
396 |
-
# else:
|
397 |
-
# result_text += "No duplicates found."
|
398 |
-
|
399 |
-
# yield "Deduplication completed.", result_text
|
400 |
-
|
401 |
-
# else:
|
402 |
-
# # Load and process Dataset 2
|
403 |
-
# yield "Loading Dataset 2...", ""
|
404 |
-
# texts2 = load_dataset_texts(dataset2_name, dataset2_split, dataset2_text_column)
|
405 |
-
# yield "Computing embeddings for Dataset 2...", ""
|
406 |
-
# embeddings2 = model.encode(texts2, show_progressbar=True)
|
407 |
-
|
408 |
-
# # Deduplicate Dataset 2 against Dataset 1
|
409 |
-
# yield "Deduplicating Dataset 2 against Dataset 1...", ""
|
410 |
-
# duplicate_indices, duplicate_mapping = deduplicate_embeddings(
|
411 |
-
# embeddings1, embeddings_b=embeddings2, threshold=threshold, progress=progress
|
412 |
-
# )
|
413 |
-
|
414 |
-
# num_duplicates = len(duplicate_indices)
|
415 |
-
# result_text = (
|
416 |
-
# f"**Total documents in {dataset2_name}/{dataset2_split}:** {len(texts2)}\n\n"
|
417 |
-
# f"**Duplicates found in Dataset 2:** {num_duplicates}\n\n"
|
418 |
-
# f"**Unique documents after deduplication:** {len(texts2) - num_duplicates}\n\n"
|
419 |
-
# )
|
420 |
-
|
421 |
-
# if num_duplicates > 0:
|
422 |
-
# result_text += "**Sample duplicates from Dataset 2:**\n\n"
|
423 |
-
# for idx in duplicate_indices[:5]:
|
424 |
-
# orig_text = texts1[duplicate_mapping[idx]]
|
425 |
-
# dup_text = texts2[idx]
|
426 |
-
# differences = display_word_differences(orig_text, dup_text)
|
427 |
-
# result_text += (
|
428 |
-
# f"**Original (Dataset 1):**\n{orig_text}\n\n"
|
429 |
-
# f"**Duplicate (Dataset 2):**\n{dup_text}\n\n"
|
430 |
-
# f"**Differences:**\n{differences}\n"
|
431 |
-
# + "-" * 50 + "\n\n"
|
432 |
-
# )
|
433 |
-
# else:
|
434 |
-
# result_text += "No duplicates found."
|
435 |
-
|
436 |
-
# yield "Deduplication completed.", result_text
|
437 |
-
|
438 |
-
# except Exception as e:
|
439 |
-
# yield f"An error occurred: {e}", ""
|
440 |
-
# raise e
|
441 |
-
|
442 |
-
# # Gradio app with stop button support
|
443 |
-
# with gr.Blocks(css="#status_output { height: 50px; overflow: auto; }") as demo:
|
444 |
-
# gr.Markdown("# Semantic Deduplication")
|
445 |
-
# gr.Markdown("""
|
446 |
-
# This demo showcases semantic deduplication using Model2Vec for HuggingFace datasets.
|
447 |
-
# It can be used to identify duplicate texts within a single dataset or across two datasets.
|
448 |
-
# You can adjust the similarity threshold to control the strictness of the deduplication.\n
|
449 |
-
# NOTE: this demo runs on a free CPU backend, so it may be slow for large datasets. For faster results, please run the code locally.
|
450 |
-
# """)
|
451 |
-
|
452 |
-
# deduplication_type = gr.Radio(
|
453 |
-
# choices=["Cross-dataset", "Single dataset"], # Swapped "Cross-dataset" to the left
|
454 |
-
# label="Deduplication Type",
|
455 |
-
# value="Cross-dataset", # Set "Cross-dataset" as the default value
|
456 |
-
# )
|
457 |
-
|
458 |
-
# with gr.Row():
|
459 |
-
# dataset1_name = gr.Textbox(value=default_dataset_name, label="Dataset 1 Name")
|
460 |
-
# dataset1_split = gr.Textbox(value=default_dataset_split, label="Dataset 1 Split")
|
461 |
-
# dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
462 |
-
|
463 |
-
# dataset2_inputs = gr.Column(visible=True) # Make dataset2_inputs visible by default
|
464 |
-
# with dataset2_inputs:
|
465 |
-
# gr.Markdown("### Dataset 2")
|
466 |
-
# with gr.Row():
|
467 |
-
# dataset2_name = gr.Textbox(value=default_dataset_name, label="Dataset 2 Name")
|
468 |
-
# dataset2_split = gr.Textbox(value=default_dataset_split, label="Dataset 2 Split")
|
469 |
-
# dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
470 |
-
|
471 |
-
# threshold = gr.Slider(0.0, 1.0, value=default_threshold, label="Similarity Threshold")
|
472 |
-
|
473 |
-
# with gr.Row(): # Placing the button in the same row for better alignment
|
474 |
-
# compute_button = gr.Button("Deduplicate")
|
475 |
-
|
476 |
-
# status_output = gr.Markdown(elem_id="status_output")
|
477 |
-
# result_output = gr.Markdown()
|
478 |
-
|
479 |
-
# def update_visibility(choice: str):
|
480 |
-
# return gr.update(visible=choice == "Cross-dataset")
|
481 |
-
|
482 |
-
# deduplication_type.change(update_visibility, inputs=deduplication_type, outputs=dataset2_inputs)
|
483 |
-
|
484 |
-
# compute_button.click(
|
485 |
-
# fn=perform_deduplication,
|
486 |
-
# inputs=[
|
487 |
-
# deduplication_type,
|
488 |
-
# dataset1_name,
|
489 |
-
# dataset1_split,
|
490 |
-
# dataset1_text_column,
|
491 |
-
# dataset2_name,
|
492 |
-
# dataset2_split,
|
493 |
-
# dataset2_text_column,
|
494 |
-
# threshold,
|
495 |
-
# ],
|
496 |
-
# outputs=[status_output, result_output],
|
497 |
-
# )
|
498 |
-
|
499 |
-
|
500 |
-
# demo.launch()
|
501 |
-
|
502 |
-
# # import gradio as gr
|
503 |
-
# # from datasets import load_dataset
|
504 |
-
# # import numpy as np
|
505 |
-
# # from model2vec import StaticModel
|
506 |
-
# # from reach import Reach
|
507 |
-
# # from difflib import ndiff
|
508 |
-
|
509 |
-
# # # Load the model
|
510 |
-
# # model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
511 |
-
|
512 |
-
# # # Default parameters
|
513 |
-
# # default_dataset_name = "sst2"
|
514 |
-
# # default_dataset_split = "train"
|
515 |
-
# # default_text_column = "sentence"
|
516 |
-
# # default_threshold = 0.9
|
517 |
-
|
518 |
-
# # def deduplicate_embeddings(
|
519 |
-
# # embeddings_a: np.ndarray,
|
520 |
-
# # embeddings_b: np.ndarray = None,
|
521 |
-
# # threshold: float = 0.9,
|
522 |
-
# # batch_size: int = 1024,
|
523 |
-
# # progress=None
|
524 |
-
# # ) -> tuple[np.ndarray, dict[int, int]]:
|
525 |
-
# # """
|
526 |
-
# # Deduplicate embeddings within one dataset or across two datasets.
|
527 |
-
|
528 |
-
# # :param embeddings_a: Embeddings of Dataset 1.
|
529 |
-
# # :param embeddings_b: Optional, embeddings of Dataset 2.
|
530 |
-
# # :param threshold: Similarity threshold for deduplication.
|
531 |
-
# # :param batch_size: Batch size for similarity computation.
|
532 |
-
# # :param progress: Gradio progress tracker for feedback.
|
533 |
-
# # :return: Deduplicated indices and a mapping of removed indices to their original counterparts.
|
534 |
-
# # """
|
535 |
-
# # if embeddings_b is None:
|
536 |
-
# # reach = Reach(vectors=embeddings_a, items=[str(i) for i in range(len(embeddings_a))])
|
537 |
-
# # duplicate_to_original = {}
|
538 |
-
# # results = reach.nearest_neighbor_threshold(
|
539 |
-
# # embeddings_a, threshold=threshold, batch_size=batch_size, show_progressbar=False
|
540 |
-
# # )
|
541 |
-
# # for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=len(embeddings_a))):
|
542 |
-
# # for sim_idx, _ in similar_items:
|
543 |
-
# # sim_idx = int(sim_idx)
|
544 |
-
# # if sim_idx != i and sim_idx not in duplicate_to_original:
|
545 |
-
# # duplicate_to_original[sim_idx] = i
|
546 |
-
# # deduplicated_indices = set(range(len(embeddings_a))) - set(duplicate_to_original.keys())
|
547 |
-
# # return deduplicated_indices, duplicate_to_original
|
548 |
-
# # else:
|
549 |
-
# # reach = Reach(vectors=embeddings_a, items=[str(i) for i in range(len(embeddings_a))])
|
550 |
-
# # duplicate_indices_in_b = []
|
551 |
-
# # duplicate_to_original = {}
|
552 |
-
# # results = reach.nearest_neighbor_threshold(
|
553 |
-
# # embeddings_b, threshold=threshold, batch_size=batch_size, show_progressbar=False
|
554 |
-
# # )
|
555 |
-
# # for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=len(embeddings_b))):
|
556 |
-
# # if similar_items:
|
557 |
-
# # duplicate_indices_in_b.append(i)
|
558 |
-
# # duplicate_to_original[i] = int(similar_items[0][0])
|
559 |
-
# # return duplicate_indices_in_b, duplicate_to_original
|
560 |
-
|
561 |
-
# # def display_word_differences(x: str, y: str) -> str:
|
562 |
-
# # """
|
563 |
-
# # Display the word-level differences between two texts, formatted to avoid
|
564 |
-
# # misinterpretation of Markdown syntax.
|
565 |
-
|
566 |
-
# # :param x: First text.
|
567 |
-
# # :param y: Second text.
|
568 |
-
# # :return: A string showing word-level differences, wrapped in a code block.
|
569 |
-
# # """
|
570 |
-
# # diff = ndiff(x.split(), y.split())
|
571 |
-
# # formatted_diff = "\n".join(word for word in diff if word.startswith(("+", "-")))
|
572 |
-
# # return f"```\n{formatted_diff}\n```"
|
573 |
-
|
574 |
-
# # def load_dataset_texts(dataset_name: str, dataset_split: str, text_column: str) -> list[str]:
|
575 |
-
# # """
|
576 |
-
# # Load texts from a specified dataset and split.
|
577 |
-
|
578 |
-
# # :param dataset_name: Name of the dataset.
|
579 |
-
# # :param dataset_split: Split of the dataset (e.g., 'train', 'validation').
|
580 |
-
# # :param text_column: Name of the text column.
|
581 |
-
# # :return: A list of texts from the dataset.
|
582 |
-
# # """
|
583 |
-
# # ds = load_dataset(dataset_name, split=dataset_split)
|
584 |
-
# # return [example[text_column] for example in ds]
|
585 |
-
|
586 |
-
# # def perform_deduplication(
|
587 |
-
# # deduplication_type: str,
|
588 |
-
# # dataset1_name: str,
|
589 |
-
# # dataset1_split: str,
|
590 |
-
# # dataset1_text_column: str,
|
591 |
-
# # dataset2_name: str = "",
|
592 |
-
# # dataset2_split: str = "",
|
593 |
-
# # dataset2_text_column: str = "",
|
594 |
-
# # threshold: float = default_threshold,
|
595 |
-
# # progress: gr.Progress = gr.Progress(track_tqdm=True)
|
596 |
-
# # ):
|
597 |
-
# # """
|
598 |
-
# # Perform deduplication on one or two datasets based on the deduplication type.
|
599 |
-
|
600 |
-
# # :param deduplication_type: 'Single dataset' or 'Cross-dataset'.
|
601 |
-
# # :param dataset1_name: Name of the first dataset.
|
602 |
-
# # :param dataset1_split: Split of the first dataset.
|
603 |
-
# # :param dataset1_text_column: Text column of the first dataset.
|
604 |
-
# # :param dataset2_name: Optional, name of the second dataset (for cross-dataset deduplication).
|
605 |
-
# # :param dataset2_split: Optional, split of the second dataset.
|
606 |
-
# # :param dataset2_text_column: Optional, text column of the second dataset.
|
607 |
-
# # :param threshold: Similarity threshold for deduplication.
|
608 |
-
# # :param progress: Gradio progress tracker.
|
609 |
-
# # :return: Status updates and result text for the Gradio interface.
|
610 |
-
# # """
|
611 |
-
# # try:
|
612 |
-
# # threshold = float(threshold)
|
613 |
-
|
614 |
-
# # # Load and process Dataset 1
|
615 |
-
# # yield "Loading Dataset 1...", ""
|
616 |
-
# # texts1 = load_dataset_texts(dataset1_name, dataset1_split, dataset1_text_column)
|
617 |
-
# # yield "Computing embeddings for Dataset 1...", ""
|
618 |
-
# # embeddings1 = model.encode(texts1, show_progressbar=True)
|
619 |
-
|
620 |
-
# # if deduplication_type == "Single dataset":
|
621 |
-
# # # Deduplicate within Dataset 1
|
622 |
-
# # yield "Deduplicating within Dataset 1...", ""
|
623 |
-
# # deduplicated_indices, duplicate_mapping = deduplicate_embeddings(
|
624 |
-
# # embeddings1, threshold=threshold, progress=progress
|
625 |
-
# # )
|
626 |
-
|
627 |
-
# # num_duplicates = len(duplicate_mapping)
|
628 |
-
# # result_text = (
|
629 |
-
# # f"**Total documents:** {len(texts1)}\n\n"
|
630 |
-
# # f"**Duplicates found:** {num_duplicates}\n\n"
|
631 |
-
# # f"**Unique documents after deduplication:** {len(deduplicated_indices)}\n\n"
|
632 |
-
# # )
|
633 |
-
|
634 |
-
# # if num_duplicates > 0:
|
635 |
-
# # result_text += "**Sample duplicates:**\n\n"
|
636 |
-
# # for dup_idx, orig_idx in list(duplicate_mapping.items())[:5]:
|
637 |
-
# # orig_text = texts1[orig_idx]
|
638 |
-
# # dup_text = texts1[dup_idx]
|
639 |
-
# # differences = display_word_differences(orig_text, dup_text)
|
640 |
-
# # result_text += (
|
641 |
-
# # f"**Original:**\n{orig_text}\n\n"
|
642 |
-
# # f"**Duplicate:**\n{dup_text}\n\n"
|
643 |
-
# # f"**Differences:**\n{differences}\n"
|
644 |
-
# # + "-" * 50 + "\n\n"
|
645 |
-
# # )
|
646 |
-
# # else:
|
647 |
-
# # result_text += "No duplicates found."
|
648 |
-
|
649 |
-
# # yield "Deduplication completed.", result_text
|
650 |
-
|
651 |
-
# # else:
|
652 |
-
# # # Load and process Dataset 2
|
653 |
-
# # yield "Loading Dataset 2...", ""
|
654 |
-
# # texts2 = load_dataset_texts(dataset2_name, dataset2_split, dataset2_text_column)
|
655 |
-
# # yield "Computing embeddings for Dataset 2...", ""
|
656 |
-
# # embeddings2 = model.encode(texts2, show_progressbar=True)
|
657 |
-
|
658 |
-
# # # Deduplicate Dataset 2 against Dataset 1
|
659 |
-
# # yield "Deduplicating Dataset 2 against Dataset 1...", ""
|
660 |
-
# # duplicate_indices, duplicate_mapping = deduplicate_embeddings(
|
661 |
-
# # embeddings1, embeddings_b=embeddings2, threshold=threshold, progress=progress
|
662 |
-
# # )
|
663 |
-
|
664 |
-
# # num_duplicates = len(duplicate_indices)
|
665 |
-
# # result_text = (
|
666 |
-
# # f"**Total documents in {dataset2_name}/{dataset2_split}:** {len(texts2)}\n\n"
|
667 |
-
# # f"**Duplicates found in Dataset 2:** {num_duplicates}\n\n"
|
668 |
-
# # f"**Unique documents after deduplication:** {len(texts2) - num_duplicates}\n\n"
|
669 |
-
# # )
|
670 |
-
|
671 |
-
# # if num_duplicates > 0:
|
672 |
-
# # result_text += "**Sample duplicates from Dataset 2:**\n\n"
|
673 |
-
# # for idx in duplicate_indices[:5]:
|
674 |
-
# # orig_text = texts1[duplicate_mapping[idx]]
|
675 |
-
# # dup_text = texts2[idx]
|
676 |
-
# # differences = display_word_differences(orig_text, dup_text)
|
677 |
-
# # result_text += (
|
678 |
-
# # f"**Original (Dataset 1):**\n{orig_text}\n\n"
|
679 |
-
# # f"**Duplicate (Dataset 2):**\n{dup_text}\n\n"
|
680 |
-
# # f"**Differences:**\n{differences}\n"
|
681 |
-
# # + "-" * 50 + "\n\n"
|
682 |
-
# # )
|
683 |
-
# # else:
|
684 |
-
# # result_text += "No duplicates found."
|
685 |
-
|
686 |
-
# # yield "Deduplication completed.", result_text
|
687 |
-
|
688 |
-
# # except Exception as e:
|
689 |
-
# # yield f"An error occurred: {e}", ""
|
690 |
-
# # raise e
|
691 |
-
|
692 |
-
# # # Gradio app with stop button support
|
693 |
-
# # with gr.Blocks(css="#status_output { height: 50px; overflow: auto; }") as demo:
|
694 |
-
# # gr.Markdown("# Semantic Deduplication")
|
695 |
-
# # gr.Markdown("""
|
696 |
-
# # This demo showcases semantic deduplication using Model2Vec for HuggingFace datasets.
|
697 |
-
# # It can be used to identify duplicate texts within a single dataset or across two datasets.
|
698 |
-
# # You can adjust the similarity threshold to control the strictness of the deduplication.\n
|
699 |
-
# # NOTE: this demo runs on a free CPU backend, so it may be slow for large datasets. For faster results, please run the code locally.
|
700 |
-
# # """)
|
701 |
-
|
702 |
-
# # deduplication_type = gr.Radio(
|
703 |
-
# # choices=["Single dataset", "Cross-dataset"],
|
704 |
-
# # label="Deduplication Type",
|
705 |
-
# # value="Cross-dataset", # Set "Cross-dataset" as the default value
|
706 |
-
# # )
|
707 |
-
|
708 |
-
# # with gr.Row():
|
709 |
-
# # dataset1_name = gr.Textbox(value=default_dataset_name, label="Dataset 1 Name")
|
710 |
-
# # dataset1_split = gr.Textbox(value=default_dataset_split, label="Dataset 1 Split")
|
711 |
-
# # dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
712 |
-
|
713 |
-
# # dataset2_inputs = gr.Column(visible=True) # Make dataset2_inputs visible by default
|
714 |
-
# # with dataset2_inputs:
|
715 |
-
# # gr.Markdown("### Dataset 2")
|
716 |
-
# # with gr.Row():
|
717 |
-
# # dataset2_name = gr.Textbox(value=default_dataset_name, label="Dataset 2 Name")
|
718 |
-
# # dataset2_split = gr.Textbox(value=default_dataset_split, label="Dataset 2 Split")
|
719 |
-
# # dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
720 |
-
|
721 |
-
# # threshold = gr.Slider(0.0, 1.0, value=default_threshold, label="Similarity Threshold")
|
722 |
-
# # compute_button = gr.Button("Deduplicate")
|
723 |
-
# # status_output = gr.Markdown(elem_id="status_output")
|
724 |
-
# # result_output = gr.Markdown()
|
725 |
-
|
726 |
-
# # def update_visibility(choice: str):
|
727 |
-
# # return gr.update(visible=choice == "Cross-dataset")
|
728 |
-
|
729 |
-
# # deduplication_type.change(update_visibility, inputs=deduplication_type, outputs=dataset2_inputs)
|
730 |
-
|
731 |
-
# # compute_button.click(
|
732 |
-
# # fn=perform_deduplication,
|
733 |
-
# # inputs=[
|
734 |
-
# # deduplication_type,
|
735 |
-
# # dataset1_name,
|
736 |
-
# # dataset1_split,
|
737 |
-
# # dataset1_text_column,
|
738 |
-
# # dataset2_name,
|
739 |
-
# # dataset2_split,
|
740 |
-
# # dataset2_text_column,
|
741 |
-
# # threshold,
|
742 |
-
# # ],
|
743 |
-
# # outputs=[status_output, result_output],
|
744 |
-
# # )
|
745 |
-
|
746 |
-
|
747 |
-
# # demo.launch()
|
748 |
-
|
749 |
-
# # # import gradio as gr
|
750 |
-
# # # from datasets import load_dataset
|
751 |
-
# # # import numpy as np
|
752 |
-
# # # from model2vec import StaticModel
|
753 |
-
# # # from reach import Reach
|
754 |
-
# # # from difflib import ndiff
|
755 |
-
|
756 |
-
# # # # Load the model
|
757 |
-
# # # model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
758 |
-
|
759 |
-
# # # # Default parameters
|
760 |
-
# # # default_dataset_name = "sst2"
|
761 |
-
# # # default_dataset_split = "train"
|
762 |
-
# # # default_text_column = "sentence"
|
763 |
-
# # # default_threshold = 0.9
|
764 |
-
|
765 |
-
# # # def deduplicate_embeddings(
|
766 |
-
# # # embeddings_a: np.ndarray,
|
767 |
-
# # # embeddings_b: np.ndarray = None,
|
768 |
-
# # # threshold: float = 0.9,
|
769 |
-
# # # batch_size: int = 1024,
|
770 |
-
# # # progress=None
|
771 |
-
# # # ) -> tuple[np.ndarray, dict[int, int]]:
|
772 |
-
# # # """
|
773 |
-
# # # Deduplicate embeddings within one dataset or across two datasets.
|
774 |
-
|
775 |
-
# # # :param embeddings_a: Embeddings of Dataset 1.
|
776 |
-
# # # :param embeddings_b: Optional, embeddings of Dataset 2.
|
777 |
-
# # # :param threshold: Similarity threshold for deduplication.
|
778 |
-
# # # :param batch_size: Batch size for similarity computation.
|
779 |
-
# # # :param progress: Gradio progress tracker for feedback.
|
780 |
-
# # # :return: Deduplicated indices and a mapping of removed indices to their original counterparts.
|
781 |
-
# # # """
|
782 |
-
# # # if embeddings_b is None:
|
783 |
-
# # # reach = Reach(vectors=embeddings_a, items=[str(i) for i in range(len(embeddings_a))])
|
784 |
-
# # # duplicate_to_original = {}
|
785 |
-
# # # results = reach.nearest_neighbor_threshold(
|
786 |
-
# # # embeddings_a, threshold=threshold, batch_size=batch_size, show_progressbar=False
|
787 |
-
# # # )
|
788 |
-
# # # for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=len(embeddings_a))):
|
789 |
-
# # # for sim_idx, _ in similar_items:
|
790 |
-
# # # sim_idx = int(sim_idx)
|
791 |
-
# # # if sim_idx != i and sim_idx not in duplicate_to_original:
|
792 |
-
# # # duplicate_to_original[sim_idx] = i
|
793 |
-
# # # deduplicated_indices = set(range(len(embeddings_a))) - set(duplicate_to_original.keys())
|
794 |
-
# # # return deduplicated_indices, duplicate_to_original
|
795 |
-
# # # else:
|
796 |
-
# # # reach = Reach(vectors=embeddings_a, items=[str(i) for i in range(len(embeddings_a))])
|
797 |
-
# # # duplicate_indices_in_b = []
|
798 |
-
# # # duplicate_to_original = {}
|
799 |
-
# # # results = reach.nearest_neighbor_threshold(
|
800 |
-
# # # embeddings_b, threshold=threshold, batch_size=batch_size, show_progressbar=False
|
801 |
-
# # # )
|
802 |
-
# # # for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=len(embeddings_b))):
|
803 |
-
# # # if similar_items:
|
804 |
-
# # # duplicate_indices_in_b.append(i)
|
805 |
-
# # # duplicate_to_original[i] = int(similar_items[0][0])
|
806 |
-
# # # return duplicate_indices_in_b, duplicate_to_original
|
807 |
-
|
808 |
-
# # # def display_word_differences(x: str, y: str) -> str:
|
809 |
-
# # # """
|
810 |
-
# # # Display the word-level differences between two texts, formatted to avoid
|
811 |
-
# # # misinterpretation of Markdown syntax.
|
812 |
-
|
813 |
-
# # # :param x: First text.
|
814 |
-
# # # :param y: Second text.
|
815 |
-
# # # :return: A string showing word-level differences, wrapped in a code block.
|
816 |
-
# # # """
|
817 |
-
# # # diff = ndiff(x.split(), y.split())
|
818 |
-
# # # formatted_diff = "\n".join(word for word in diff if word.startswith(("+", "-")))
|
819 |
-
# # # return f"```\n{formatted_diff}\n```"
|
820 |
-
|
821 |
-
# # # def load_dataset_texts(dataset_name: str, dataset_split: str, text_column: str) -> list[str]:
|
822 |
-
# # # """
|
823 |
-
# # # Load texts from a specified dataset and split.
|
824 |
-
|
825 |
-
# # # :param dataset_name: Name of the dataset.
|
826 |
-
# # # :param dataset_split: Split of the dataset (e.g., 'train', 'validation').
|
827 |
-
# # # :param text_column: Name of the text column.
|
828 |
-
# # # :return: A list of texts from the dataset.
|
829 |
-
# # # """
|
830 |
-
# # # ds = load_dataset(dataset_name, split=dataset_split)
|
831 |
-
# # # return [example[text_column] for example in ds]
|
832 |
-
|
833 |
-
# # # def perform_deduplication(
|
834 |
-
# # # deduplication_type: str,
|
835 |
-
# # # dataset1_name: str,
|
836 |
-
# # # dataset1_split: str,
|
837 |
-
# # # dataset1_text_column: str,
|
838 |
-
# # # dataset2_name: str = "",
|
839 |
-
# # # dataset2_split: str = "",
|
840 |
-
# # # dataset2_text_column: str = "",
|
841 |
-
# # # threshold: float = default_threshold,
|
842 |
-
# # # progress: gr.Progress = gr.Progress(track_tqdm=True)
|
843 |
-
# # # ):
|
844 |
-
# # # """
|
845 |
-
# # # Perform deduplication on one or two datasets based on the deduplication type.
|
846 |
-
|
847 |
-
# # # :param deduplication_type: 'Single dataset' or 'Cross-dataset'.
|
848 |
-
# # # :param dataset1_name: Name of the first dataset.
|
849 |
-
# # # :param dataset1_split: Split of the first dataset.
|
850 |
-
# # # :param dataset1_text_column: Text column of the first dataset.
|
851 |
-
# # # :param dataset2_name: Optional, name of the second dataset (for cross-dataset deduplication).
|
852 |
-
# # # :param dataset2_split: Optional, split of the second dataset.
|
853 |
-
# # # :param dataset2_text_column: Optional, text column of the second dataset.
|
854 |
-
# # # :param threshold: Similarity threshold for deduplication.
|
855 |
-
# # # :param progress: Gradio progress tracker.
|
856 |
-
# # # :return: Status updates and result text for the Gradio interface.
|
857 |
-
# # # """
|
858 |
-
# # # try:
|
859 |
-
# # # threshold = float(threshold)
|
860 |
-
|
861 |
-
# # # # Load and process Dataset 1
|
862 |
-
# # # yield "Loading Dataset 1...", ""
|
863 |
-
# # # texts1 = load_dataset_texts(dataset1_name, dataset1_split, dataset1_text_column)
|
864 |
-
# # # yield "Computing embeddings for Dataset 1...", ""
|
865 |
-
# # # embeddings1 = model.encode(texts1, show_progressbar=True)
|
866 |
-
|
867 |
-
# # # if deduplication_type == "Single dataset":
|
868 |
-
# # # # Deduplicate within Dataset 1
|
869 |
-
# # # yield "Deduplicating within Dataset 1...", ""
|
870 |
-
# # # deduplicated_indices, duplicate_mapping = deduplicate_embeddings(
|
871 |
-
# # # embeddings1, threshold=threshold, progress=progress
|
872 |
-
# # # )
|
873 |
-
|
874 |
-
# # # num_duplicates = len(duplicate_mapping)
|
875 |
-
# # # result_text = (
|
876 |
-
# # # f"**Total documents:** {len(texts1)}\n\n"
|
877 |
-
# # # f"**Duplicates found:** {num_duplicates}\n\n"
|
878 |
-
# # # f"**Unique documents after deduplication:** {len(deduplicated_indices)}\n\n"
|
879 |
-
# # # )
|
880 |
-
|
881 |
-
# # # if num_duplicates > 0:
|
882 |
-
# # # result_text += "**Sample duplicates:**\n\n"
|
883 |
-
# # # for dup_idx, orig_idx in list(duplicate_mapping.items())[:5]:
|
884 |
-
# # # orig_text = texts1[orig_idx]
|
885 |
-
# # # dup_text = texts1[dup_idx]
|
886 |
-
# # # differences = display_word_differences(orig_text, dup_text)
|
887 |
-
# # # result_text += (
|
888 |
-
# # # f"**Original:**\n{orig_text}\n\n"
|
889 |
-
# # # f"**Duplicate:**\n{dup_text}\n\n"
|
890 |
-
# # # f"**Differences:**\n{differences}\n"
|
891 |
-
# # # + "-" * 50 + "\n\n"
|
892 |
-
# # # )
|
893 |
-
# # # else:
|
894 |
-
# # # result_text += "No duplicates found."
|
895 |
-
|
896 |
-
# # # yield "Deduplication completed.", result_text
|
897 |
-
|
898 |
-
# # # else:
|
899 |
-
# # # # Load and process Dataset 2
|
900 |
-
# # # yield "Loading Dataset 2...", ""
|
901 |
-
# # # texts2 = load_dataset_texts(dataset2_name, dataset2_split, dataset2_text_column)
|
902 |
-
# # # yield "Computing embeddings for Dataset 2...", ""
|
903 |
-
# # # embeddings2 = model.encode(texts2, show_progressbar=True)
|
904 |
-
|
905 |
-
# # # # Deduplicate Dataset 2 against Dataset 1
|
906 |
-
# # # yield "Deduplicating Dataset 2 against Dataset 1...", ""
|
907 |
-
# # # duplicate_indices, duplicate_mapping = deduplicate_embeddings(
|
908 |
-
# # # embeddings1, embeddings_b=embeddings2, threshold=threshold, progress=progress
|
909 |
-
# # # )
|
910 |
-
|
911 |
-
# # # num_duplicates = len(duplicate_indices)
|
912 |
-
# # # result_text = (
|
913 |
-
# # # f"**Total documents in {dataset2_name}/{dataset2_split}:** {len(texts2)}\n\n"
|
914 |
-
# # # f"**Duplicates found in Dataset 2:** {num_duplicates}\n\n"
|
915 |
-
# # # f"**Unique documents after deduplication:** {len(texts2) - num_duplicates}\n\n"
|
916 |
-
# # # )
|
917 |
-
|
918 |
-
# # # if num_duplicates > 0:
|
919 |
-
# # # result_text += "**Sample duplicates from Dataset 2:**\n\n"
|
920 |
-
# # # for idx in duplicate_indices[:5]:
|
921 |
-
# # # orig_text = texts1[duplicate_mapping[idx]]
|
922 |
-
# # # dup_text = texts2[idx]
|
923 |
-
# # # differences = display_word_differences(orig_text, dup_text)
|
924 |
-
# # # result_text += (
|
925 |
-
# # # f"**Original (Dataset 1):**\n{orig_text}\n\n"
|
926 |
-
# # # f"**Duplicate (Dataset 2):**\n{dup_text}\n\n"
|
927 |
-
# # # f"**Differences:**\n{differences}\n"
|
928 |
-
# # # + "-" * 50 + "\n\n"
|
929 |
-
# # # )
|
930 |
-
# # # else:
|
931 |
-
# # # result_text += "No duplicates found."
|
932 |
-
|
933 |
-
# # # yield "Deduplication completed.", result_text
|
934 |
-
|
935 |
-
# # # except Exception as e:
|
936 |
-
# # # yield f"An error occurred: {e}", ""
|
937 |
-
# # # raise e
|
938 |
-
|
939 |
-
# # # # Gradio app with stop button support
|
940 |
-
# # # with gr.Blocks(css="#status_output { height: 50px; overflow: auto; }") as demo:
|
941 |
-
# # # gr.Markdown("# Semantic Deduplication")
|
942 |
-
# # # gr.Markdown("""
|
943 |
-
# # # This demo showcases semantic deduplication using Model2Vec for HuggingFace datasets.
|
944 |
-
# # # It can be used to identify duplicate texts within a single dataset or across two datasets.
|
945 |
-
# # # You can adjust the similarity threshold to control the strictness of the deduplication.\n
|
946 |
-
# # # NOTE: this demo runs on a free CPU backend, so it may be slow for large datasets. For faster results, please run the code locally.
|
947 |
-
# # # """)
|
948 |
-
|
949 |
-
# # # deduplication_type = gr.Radio(
|
950 |
-
# # # choices=["Single dataset", "Cross-dataset"],
|
951 |
-
# # # label="Deduplication Type",
|
952 |
-
# # # value="Single dataset",
|
953 |
-
# # # )
|
954 |
-
|
955 |
-
# # # with gr.Row():
|
956 |
-
# # # dataset1_name = gr.Textbox(value=default_dataset_name, label="Dataset 1 Name")
|
957 |
-
# # # dataset1_split = gr.Textbox(value=default_dataset_split, label="Dataset 1 Split")
|
958 |
-
# # # dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
959 |
-
|
960 |
-
# # # dataset2_inputs = gr.Column(visible=False)
|
961 |
-
# # # with dataset2_inputs:
|
962 |
-
# # # gr.Markdown("### Dataset 2")
|
963 |
-
# # # with gr.Row():
|
964 |
-
# # # dataset2_name = gr.Textbox(value=default_dataset_name, label="Dataset 2 Name")
|
965 |
-
# # # dataset2_split = gr.Textbox(value=default_dataset_split, label="Dataset 2 Split")
|
966 |
-
# # # dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
967 |
-
|
968 |
-
# # # threshold = gr.Slider(0.0, 1.0, value=default_threshold, label="Similarity Threshold")
|
969 |
-
# # # compute_button = gr.Button("Deduplicate")
|
970 |
-
# # # status_output = gr.Markdown(elem_id="status_output")
|
971 |
-
# # # result_output = gr.Markdown()
|
972 |
-
|
973 |
-
# # # def update_visibility(choice: str):
|
974 |
-
# # # return gr.update(visible=choice == "Cross-dataset")
|
975 |
-
|
976 |
-
# # # deduplication_type.change(update_visibility, inputs=deduplication_type, outputs=dataset2_inputs)
|
977 |
-
|
978 |
-
# # # compute_button.click(
|
979 |
-
# # # fn=perform_deduplication,
|
980 |
-
# # # inputs=[
|
981 |
-
# # # deduplication_type,
|
982 |
-
# # # dataset1_name,
|
983 |
-
# # # dataset1_split,
|
984 |
-
# # # dataset1_text_column,
|
985 |
-
# # # dataset2_name,
|
986 |
-
# # # dataset2_split,
|
987 |
-
# # # dataset2_text_column,
|
988 |
-
# # # threshold,
|
989 |
-
# # # ],
|
990 |
-
# # # outputs=[status_output, result_output],
|
991 |
-
# # # )
|
992 |
-
|
993 |
-
|
994 |
-
# # # demo.launch()
|
|
|
248 |
|
249 |
|
250 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|