Update app.py
Browse files
app.py
CHANGED
@@ -16,6 +16,7 @@ tokenizer = MT5TokenizerFast.from_pretrained(
|
|
16 |
)
|
17 |
|
18 |
def predict(text):
|
|
|
19 |
# with torch.no_grad():
|
20 |
input_ids = tokenizer.encode(text, return_tensors="pt", add_special_tokens=True)
|
21 |
generated_ids = model.generate(
|
@@ -41,7 +42,7 @@ def predict(text):
|
|
41 |
|
42 |
output = ['Q: ' + text for text in preds]
|
43 |
final_str = '\n'.join([f"{i+1}. Question: {s.split('Answer')[0].strip()}\n Answer{s.split('Answer')[1].strip()}" for i, s in enumerate(output)])
|
44 |
-
|
45 |
|
46 |
# text_to_predict = predict(text)
|
47 |
# predicted = ['Q: ' + text for text in predict(text_to_predict)]
|
|
|
16 |
)
|
17 |
|
18 |
def predict(text):
|
19 |
+
|
20 |
# with torch.no_grad():
|
21 |
input_ids = tokenizer.encode(text, return_tensors="pt", add_special_tokens=True)
|
22 |
generated_ids = model.generate(
|
|
|
42 |
|
43 |
output = ['Q: ' + text for text in preds]
|
44 |
final_str = '\n'.join([f"{i+1}. Question: {s.split('Answer')[0].strip()}\n Answer{s.split('Answer')[1].strip()}" for i, s in enumerate(output)])
|
45 |
+
return final_str
|
46 |
|
47 |
# text_to_predict = predict(text)
|
48 |
# predicted = ['Q: ' + text for text in predict(text_to_predict)]
|