Spaces:
Sleeping
Sleeping
File size: 7,707 Bytes
704db80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import os
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_core.documents import Document
from langchain_community.embeddings.sentence_transformer import (
SentenceTransformerEmbeddings,
)
from langchain.schema import StrOutputParser
from langchain_community.vectorstores import Chroma
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain import hub
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_groq import ChatGroq
from langchain_openai import ChatOpenAI
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_anthropic import ChatAnthropic
from dotenv import load_dotenv
from langchain_core.output_parsers import XMLOutputParser
from langchain.prompts import ChatPromptTemplate
load_dotenv()
# suppress grpc and glog logs for gemini
os.environ["GRPC_VERBOSITY"] = "ERROR"
os.environ["GLOG_minloglevel"] = "2"
# RAG parameters
CHUNK_SIZE = 1024
CHUNK_OVERLAP = CHUNK_SIZE // 8
K = 10
FETCH_K = 20
llm_model_translation = {
"LLaMA 3": "llama3-70b-8192",
"OpenAI GPT 4o Mini": "gpt-4o-mini",
"OpenAI GPT 4o": "gpt-4o",
"OpenAI GPT 4": "gpt-4-turbo",
"Gemini 1.5 Pro": "gemini-1.5-pro",
"Claude Sonnet 3.5": "claude-3-5-sonnet-20240620",
}
llm_classes = {
"llama3-70b-8192": ChatGroq,
"gpt-4o-mini": ChatOpenAI,
"gpt-4o": ChatOpenAI,
"gpt-4-turbo": ChatOpenAI,
"gemini-1.5-pro": ChatGoogleGenerativeAI,
"claude-3-5-sonnet-20240620": ChatAnthropic,
}
xml_system = """You're a helpful AI assistant. Given a user prompt and some related sources, \
fulfill all the requirements of the prompt and provide citations. If a part of the generated text does \
not use any of the sources, don't put a citation for that part. Otherwise, list all sources used for that part of the text.
At the end of each relevant part, add a citation in square brackets, numbered sequentially starting from [0], regardless of the source's original ID.
Remember, you must return both the requested text and citations. A citation consists of a VERBATIM quote that \
justifies the text and a sequential number (starting from 0) for the quote's article. Return a citation for every quote across all articles \
that justify the text. Use the following format for your final output:
<cited_text>
<text></text>
<citations>
<citation><source_id></source_id><source></source><quote></quote></citation>
<citation><source_id></source_id><source></source><quote></quote></citation>
...
</citations>
</cited_text>
Here are the sources:{context}"""
xml_prompt = ChatPromptTemplate.from_messages(
[("system", xml_system), ("human", "{input}")]
)
def format_docs_xml(docs: list[Document]) -> str:
formatted = []
for i, doc in enumerate(docs):
doc_str = f"""\
<source>
<source>{doc.metadata['source']}</source>
<title>{doc.metadata['title']}</title>
<article_snippet>{doc.page_content}</article_snippet>
</source>"""
formatted.append(doc_str)
return "\n\n<sources>" + "\n".join(formatted) + "</sources>"
def citations_to_html(citations_data):
if citations_data:
html_output = "<ul>"
for index, citation in enumerate(citations_data):
source_id = citation['citation'][0]['source_id']
source = citation['citation'][1]['source']
quote = citation['citation'][2]['quote']
html_output += f"""
<li>
[{index}] - "{source}" <br>
"{quote}"
</li>
"""
html_output += "</ul>"
return html_output
return ""
def load_llm(model: str, api_key: str, temperature: float = 1.0, max_length: int = 2048):
model_name = llm_model_translation.get(model)
llm_class = llm_classes.get(model_name)
if not llm_class:
raise ValueError(f"Model {model} not supported.")
try:
llm = llm_class(model_name=model_name, temperature=temperature, max_tokens=max_length)
except Exception as e:
print(f"An error occurred: {e}")
llm = None
return llm
def create_db_with_langchain(path: list[str], url_content: dict):
all_docs = []
text_splitter = RecursiveCharacterTextSplitter(chunk_size=CHUNK_SIZE, chunk_overlap=CHUNK_OVERLAP)
embedding_function = SentenceTransformerEmbeddings(model_name="all-mpnet-base-v2")
if path:
for file in path:
loader = PyMuPDFLoader(file)
data = loader.load()
# split it into chunks
docs = text_splitter.split_documents(data)
all_docs.extend(docs)
if url_content:
for url, content in url_content.items():
doc = Document(page_content=content, metadata={"source": url})
# split it into chunks
docs = text_splitter.split_documents([doc])
all_docs.extend(docs)
# print docs
for idx, doc in enumerate(all_docs):
print(f"Doc: {idx} | Length = {len(doc.page_content)}")
assert len(all_docs) > 0, "No PDFs or scrapped data provided"
db = Chroma.from_documents(all_docs, embedding_function)
return db
def generate_rag(
prompt: str,
topic: str,
model: str,
url_content: dict,
path: list[str],
temperature: float = 1.0,
max_length: int = 2048,
api_key: str = "",
sys_message="",
):
llm = load_llm(model, api_key, temperature, max_length)
if llm is None:
print("Failed to load LLM. Aborting operation.")
return None
db = create_db_with_langchain(path, url_content)
retriever = db.as_retriever(search_type="mmr", search_kwargs={"k": K, "fetch_k": FETCH_K})
rag_prompt = hub.pull("rlm/rag-prompt")
def format_docs(docs):
if all(isinstance(doc, Document) for doc in docs):
return "\n\n".join(doc.page_content for doc in docs)
else:
raise TypeError("All items in docs must be instances of Document.")
docs = retriever.get_relevant_documents(topic)
# formatted_docs = format_docs(docs)
# rag_chain = (
# {"context": lambda _: formatted_docs, "question": RunnablePassthrough()} | rag_prompt | llm | StrOutputParser()
# )
# return rag_chain.invoke(prompt)
formatted_docs = format_docs_xml(docs)
rag_chain = (
RunnablePassthrough.assign(context=lambda _: formatted_docs)
| xml_prompt
| llm
| XMLOutputParser()
)
result = rag_chain.invoke({"input": prompt})
from pprint import pprint
pprint(result)
return result['cited_text'][0]['text'], citations_to_html(result['cited_text'][1]['citations'])
def generate_base(
prompt: str, topic: str, model: str, temperature: float, max_length: int, api_key: str, sys_message=""
):
llm = load_llm(model, api_key, temperature, max_length)
if llm is None:
print("Failed to load LLM. Aborting operation.")
return None
try:
output = llm.invoke(prompt).content
return output
except Exception as e:
print(f"An error occurred while running the model: {e}")
return None
def generate(
prompt: str,
topic: str,
model: str,
url_content: dict,
path: list[str],
temperature: float = 1.0,
max_length: int = 2048,
api_key: str = "",
sys_message="",
):
if path or url_content:
return generate_rag(prompt, topic, model, url_content, path, temperature, max_length, api_key, sys_message)
else:
return generate_base(prompt, topic, model, temperature, max_length, api_key, sys_message) |