File size: 7,707 Bytes
704db80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import os
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_core.documents import Document
from langchain_community.embeddings.sentence_transformer import (
    SentenceTransformerEmbeddings,
)
from langchain.schema import StrOutputParser
from langchain_community.vectorstores import Chroma
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain import hub
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_groq import ChatGroq
from langchain_openai import ChatOpenAI
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_anthropic import ChatAnthropic
from dotenv import load_dotenv
from langchain_core.output_parsers import XMLOutputParser
from langchain.prompts import ChatPromptTemplate

load_dotenv()

# suppress grpc and glog logs for gemini
os.environ["GRPC_VERBOSITY"] = "ERROR"
os.environ["GLOG_minloglevel"] = "2"

# RAG parameters
CHUNK_SIZE = 1024
CHUNK_OVERLAP = CHUNK_SIZE // 8
K = 10
FETCH_K = 20

llm_model_translation = {
    "LLaMA 3": "llama3-70b-8192",
    "OpenAI GPT 4o Mini": "gpt-4o-mini",
    "OpenAI GPT 4o": "gpt-4o",
    "OpenAI GPT 4": "gpt-4-turbo",
    "Gemini 1.5 Pro": "gemini-1.5-pro",
    "Claude Sonnet 3.5": "claude-3-5-sonnet-20240620",
}

llm_classes = {
    "llama3-70b-8192": ChatGroq,
    "gpt-4o-mini": ChatOpenAI,
    "gpt-4o": ChatOpenAI,
    "gpt-4-turbo": ChatOpenAI,
    "gemini-1.5-pro": ChatGoogleGenerativeAI,
    "claude-3-5-sonnet-20240620": ChatAnthropic,
}

xml_system = """You're a helpful AI assistant. Given a user prompt and some related sources, \
fulfill all the requirements of the prompt and provide citations. If a part of the generated text does \
not use any of the sources, don't put a citation for that part. Otherwise, list all sources used for that part of the text.
At the end of each relevant part, add a citation in square brackets, numbered sequentially starting from [0], regardless of the source's original ID.


Remember, you must return both the requested text and citations. A citation consists of a VERBATIM quote that \
justifies the text and a sequential number (starting from 0) for the quote's article. Return a citation for every quote across all articles \
that justify the text. Use the following format for your final output:

<cited_text>
    <text></text>
    <citations>
        <citation><source_id></source_id><source></source><quote></quote></citation>
        <citation><source_id></source_id><source></source><quote></quote></citation>
        ...
    </citations>
</cited_text>

Here are the sources:{context}"""
xml_prompt = ChatPromptTemplate.from_messages(
    [("system", xml_system), ("human", "{input}")]
)

def format_docs_xml(docs: list[Document]) -> str:
    formatted = []
    for i, doc in enumerate(docs):
        doc_str = f"""\
    <source>
        <source>{doc.metadata['source']}</source>
        <title>{doc.metadata['title']}</title>
        <article_snippet>{doc.page_content}</article_snippet>
    </source>"""
        formatted.append(doc_str)
    return "\n\n<sources>" + "\n".join(formatted) + "</sources>"


def citations_to_html(citations_data):
    if citations_data:
        html_output = "<ul>"
        
        for index, citation in enumerate(citations_data):
            source_id = citation['citation'][0]['source_id']
            source = citation['citation'][1]['source']
            quote = citation['citation'][2]['quote']
            
            html_output += f"""
            <li>
                [{index}] - "{source}" <br>
                "{quote}"
            </li>
            """
        
        html_output += "</ul>"
        return html_output
    return ""


def load_llm(model: str, api_key: str, temperature: float = 1.0, max_length: int = 2048):
    model_name = llm_model_translation.get(model)
    llm_class = llm_classes.get(model_name)
    if not llm_class:
        raise ValueError(f"Model {model} not supported.")
    try:
        llm = llm_class(model_name=model_name, temperature=temperature, max_tokens=max_length)
    except Exception as e:
        print(f"An error occurred: {e}")
        llm = None
    return llm


def create_db_with_langchain(path: list[str], url_content: dict):
    all_docs = []
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=CHUNK_SIZE, chunk_overlap=CHUNK_OVERLAP)
    embedding_function = SentenceTransformerEmbeddings(model_name="all-mpnet-base-v2")
    if path:
        for file in path:
            loader = PyMuPDFLoader(file)
            data = loader.load()
            # split it into chunks
            docs = text_splitter.split_documents(data)
            all_docs.extend(docs)

    if url_content:
        for url, content in url_content.items():
            doc = Document(page_content=content, metadata={"source": url})
            # split it into chunks
            docs = text_splitter.split_documents([doc])
            all_docs.extend(docs)

    # print docs
    for idx, doc in enumerate(all_docs):
        print(f"Doc: {idx} | Length = {len(doc.page_content)}")

    assert len(all_docs) > 0, "No PDFs or scrapped data provided"
    db = Chroma.from_documents(all_docs, embedding_function)
    return db


def generate_rag(
    prompt: str,
    topic: str,
    model: str,
    url_content: dict,
    path: list[str],
    temperature: float = 1.0,
    max_length: int = 2048,
    api_key: str = "",
    sys_message="",
):
    llm = load_llm(model, api_key, temperature, max_length)
    if llm is None:
        print("Failed to load LLM. Aborting operation.")
        return None
    db = create_db_with_langchain(path, url_content)
    retriever = db.as_retriever(search_type="mmr", search_kwargs={"k": K, "fetch_k": FETCH_K})
    rag_prompt = hub.pull("rlm/rag-prompt")

    def format_docs(docs):
        if all(isinstance(doc, Document) for doc in docs):
            return "\n\n".join(doc.page_content for doc in docs)
        else:
            raise TypeError("All items in docs must be instances of Document.")

    docs = retriever.get_relevant_documents(topic)
    # formatted_docs = format_docs(docs)
    # rag_chain = (
    #     {"context": lambda _: formatted_docs, "question": RunnablePassthrough()} | rag_prompt | llm | StrOutputParser()
    # )
    # return rag_chain.invoke(prompt)

    formatted_docs = format_docs_xml(docs)
    rag_chain = (
        RunnablePassthrough.assign(context=lambda _: formatted_docs)
        | xml_prompt
        | llm
        | XMLOutputParser()
    )
    result = rag_chain.invoke({"input": prompt})
    from pprint import pprint
    pprint(result)
    return result['cited_text'][0]['text'], citations_to_html(result['cited_text'][1]['citations'])

def generate_base(
    prompt: str, topic: str, model: str, temperature: float, max_length: int, api_key: str, sys_message=""
):
    llm = load_llm(model, api_key, temperature, max_length)
    if llm is None:
        print("Failed to load LLM. Aborting operation.")
        return None
    try:
        output = llm.invoke(prompt).content
        return output
    except Exception as e:
        print(f"An error occurred while running the model: {e}")
        return None


def generate(
    prompt: str,
    topic: str,
    model: str,
    url_content: dict,
    path: list[str],
    temperature: float = 1.0,
    max_length: int = 2048,
    api_key: str = "",
    sys_message="",
):
    if path or url_content:
        return generate_rag(prompt, topic, model, url_content, path, temperature, max_length, api_key, sys_message)
    else:
        return generate_base(prompt, topic, model, temperature, max_length, api_key, sys_message)