Spaces:
Sleeping
Sleeping
Delete ai_generate
Browse files- ai_generate +0 -221
ai_generate
DELETED
@@ -1,221 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from langchain_community.document_loaders import PyMuPDFLoader
|
3 |
-
from langchain_core.documents import Document
|
4 |
-
from langchain_community.embeddings.sentence_transformer import (
|
5 |
-
SentenceTransformerEmbeddings,
|
6 |
-
)
|
7 |
-
from langchain.schema import StrOutputParser
|
8 |
-
from langchain_community.vectorstores import Chroma
|
9 |
-
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
10 |
-
from langchain import hub
|
11 |
-
from langchain_core.output_parsers import StrOutputParser
|
12 |
-
from langchain_core.runnables import RunnablePassthrough
|
13 |
-
from langchain_groq import ChatGroq
|
14 |
-
from langchain_openai import ChatOpenAI
|
15 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
16 |
-
from langchain_anthropic import ChatAnthropic
|
17 |
-
from dotenv import load_dotenv
|
18 |
-
from langchain_core.output_parsers import XMLOutputParser
|
19 |
-
from langchain.prompts import ChatPromptTemplate
|
20 |
-
|
21 |
-
load_dotenv()
|
22 |
-
|
23 |
-
# suppress grpc and glog logs for gemini
|
24 |
-
os.environ["GRPC_VERBOSITY"] = "ERROR"
|
25 |
-
os.environ["GLOG_minloglevel"] = "2"
|
26 |
-
|
27 |
-
# RAG parameters
|
28 |
-
CHUNK_SIZE = 1024
|
29 |
-
CHUNK_OVERLAP = CHUNK_SIZE // 8
|
30 |
-
K = 10
|
31 |
-
FETCH_K = 20
|
32 |
-
|
33 |
-
llm_model_translation = {
|
34 |
-
"LLaMA 3": "llama3-70b-8192",
|
35 |
-
"OpenAI GPT 4o Mini": "gpt-4o-mini",
|
36 |
-
"OpenAI GPT 4o": "gpt-4o",
|
37 |
-
"OpenAI GPT 4": "gpt-4-turbo",
|
38 |
-
"Gemini 1.5 Pro": "gemini-1.5-pro",
|
39 |
-
"Claude Sonnet 3.5": "claude-3-5-sonnet-20240620",
|
40 |
-
}
|
41 |
-
|
42 |
-
llm_classes = {
|
43 |
-
"llama3-70b-8192": ChatGroq,
|
44 |
-
"gpt-4o-mini": ChatOpenAI,
|
45 |
-
"gpt-4o": ChatOpenAI,
|
46 |
-
"gpt-4-turbo": ChatOpenAI,
|
47 |
-
"gemini-1.5-pro": ChatGoogleGenerativeAI,
|
48 |
-
"claude-3-5-sonnet-20240620": ChatAnthropic,
|
49 |
-
}
|
50 |
-
|
51 |
-
xml_system = """You're a helpful AI assistant. Given a user prompt and some related sources, \
|
52 |
-
fulfill all the requirements of the prompt and provide citations. If a part of the generated text does \
|
53 |
-
not use any of the sources, don't put a citation for that part. Otherwise, list all sources used for that part of the answer.
|
54 |
-
At the end of each relevant part, add a citation in square brackets, numbered sequentially starting from [0], regardless of the source's original ID.
|
55 |
-
|
56 |
-
|
57 |
-
Remember, you must return both the requested text and citations. A citation consists of a VERBATIM quote that \
|
58 |
-
justifies the answer and a sequential number (starting from 0) for the quote's article. Return a citation for every quote across all articles \
|
59 |
-
that justify the answer. Use the following format for your final output:
|
60 |
-
|
61 |
-
<cited_answer>
|
62 |
-
<answer></answer>
|
63 |
-
<citations>
|
64 |
-
<citation><source_id></source_id><source></source><quote></quote></citation>
|
65 |
-
<citation><source_id></source_id><source></source><quote></quote></citation>
|
66 |
-
...
|
67 |
-
</citations>
|
68 |
-
</cited_answer>
|
69 |
-
|
70 |
-
Here are the sources:{context}"""
|
71 |
-
xml_prompt = ChatPromptTemplate.from_messages(
|
72 |
-
[("system", xml_system), ("human", "{input}")]
|
73 |
-
)
|
74 |
-
|
75 |
-
def format_docs_xml(docs: list[Document]) -> str:
|
76 |
-
formatted = []
|
77 |
-
for i, doc in enumerate(docs):
|
78 |
-
doc_str = f"""\
|
79 |
-
<source>
|
80 |
-
<source>{doc.metadata['source']}</source>
|
81 |
-
<title>{doc.metadata['title']}</title>
|
82 |
-
<article_snippet>{doc.page_content}</article_snippet>
|
83 |
-
</source>"""
|
84 |
-
formatted.append(doc_str)
|
85 |
-
return "\n\n<sources>" + "\n".join(formatted) + "</sources>"
|
86 |
-
|
87 |
-
|
88 |
-
def citations_to_html(citations_data):
|
89 |
-
if citations_data:
|
90 |
-
html_output = "<ul>"
|
91 |
-
|
92 |
-
for index, citation in enumerate(citations_data):
|
93 |
-
source_id = citation['citation'][0]['source_id']
|
94 |
-
source = citation['citation'][1]['source']
|
95 |
-
quote = citation['citation'][2]['quote']
|
96 |
-
|
97 |
-
html_output += f"""
|
98 |
-
<li>
|
99 |
-
[{index}] - "{source}" <br>
|
100 |
-
"{quote}"
|
101 |
-
</li>
|
102 |
-
"""
|
103 |
-
|
104 |
-
html_output += "</ul>"
|
105 |
-
return html_output
|
106 |
-
return ""
|
107 |
-
|
108 |
-
|
109 |
-
def load_llm(model: str, api_key: str, temperature: float = 1.0, max_length: int = 2048):
|
110 |
-
model_name = llm_model_translation.get(model)
|
111 |
-
llm_class = llm_classes.get(model_name)
|
112 |
-
if not llm_class:
|
113 |
-
raise ValueError(f"Model {model} not supported.")
|
114 |
-
try:
|
115 |
-
llm = llm_class(model_name=model_name, temperature=temperature, max_tokens=max_length)
|
116 |
-
except Exception as e:
|
117 |
-
print(f"An error occurred: {e}")
|
118 |
-
llm = None
|
119 |
-
return llm
|
120 |
-
|
121 |
-
|
122 |
-
def create_db_with_langchain(path: list[str], url_content: dict):
|
123 |
-
all_docs = []
|
124 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=CHUNK_SIZE, chunk_overlap=CHUNK_OVERLAP)
|
125 |
-
embedding_function = SentenceTransformerEmbeddings(model_name="all-mpnet-base-v2")
|
126 |
-
if path:
|
127 |
-
for file in path:
|
128 |
-
loader = PyMuPDFLoader(file)
|
129 |
-
data = loader.load()
|
130 |
-
# split it into chunks
|
131 |
-
docs = text_splitter.split_documents(data)
|
132 |
-
all_docs.extend(docs)
|
133 |
-
|
134 |
-
if url_content:
|
135 |
-
for url, content in url_content.items():
|
136 |
-
doc = Document(page_content=content, metadata={"source": url})
|
137 |
-
# split it into chunks
|
138 |
-
docs = text_splitter.split_documents([doc])
|
139 |
-
all_docs.extend(docs)
|
140 |
-
|
141 |
-
# print docs
|
142 |
-
for idx, doc in enumerate(all_docs):
|
143 |
-
print(f"Doc: {idx} | Length = {len(doc.page_content)}")
|
144 |
-
|
145 |
-
assert len(all_docs) > 0, "No PDFs or scrapped data provided"
|
146 |
-
db = Chroma.from_documents(all_docs, embedding_function)
|
147 |
-
return db
|
148 |
-
|
149 |
-
|
150 |
-
def generate_rag(
|
151 |
-
prompt: str,
|
152 |
-
topic: str,
|
153 |
-
model: str,
|
154 |
-
url_content: dict,
|
155 |
-
path: list[str],
|
156 |
-
temperature: float = 1.0,
|
157 |
-
max_length: int = 2048,
|
158 |
-
api_key: str = "",
|
159 |
-
sys_message="",
|
160 |
-
):
|
161 |
-
llm = load_llm(model, api_key, temperature, max_length)
|
162 |
-
if llm is None:
|
163 |
-
print("Failed to load LLM. Aborting operation.")
|
164 |
-
return None
|
165 |
-
db = create_db_with_langchain(path, url_content)
|
166 |
-
retriever = db.as_retriever(search_type="mmr", search_kwargs={"k": K, "fetch_k": FETCH_K})
|
167 |
-
rag_prompt = hub.pull("rlm/rag-prompt")
|
168 |
-
|
169 |
-
def format_docs(docs):
|
170 |
-
if all(isinstance(doc, Document) for doc in docs):
|
171 |
-
return "\n\n".join(doc.page_content for doc in docs)
|
172 |
-
else:
|
173 |
-
raise TypeError("All items in docs must be instances of Document.")
|
174 |
-
|
175 |
-
docs = retriever.get_relevant_documents(topic)
|
176 |
-
# formatted_docs = format_docs(docs)
|
177 |
-
# rag_chain = (
|
178 |
-
# {"context": lambda _: formatted_docs, "question": RunnablePassthrough()} | rag_prompt | llm | StrOutputParser()
|
179 |
-
# )
|
180 |
-
# return rag_chain.invoke(prompt)
|
181 |
-
|
182 |
-
formatted_docs = format_docs_xml(docs)
|
183 |
-
rag_chain = (
|
184 |
-
RunnablePassthrough.assign(context=lambda _: formatted_docs)
|
185 |
-
| xml_prompt
|
186 |
-
| llm
|
187 |
-
| XMLOutputParser()
|
188 |
-
)
|
189 |
-
result = rag_chain.invoke({"input": prompt})
|
190 |
-
print(result)
|
191 |
-
return result['cited_answer'][0]['answer'], result['cited_answer'][1]['citations']
|
192 |
-
|
193 |
-
|
194 |
-
def generate_base(
|
195 |
-
prompt: str, topic: str, model: str, temperature: float, max_length: int, api_key: str, sys_message=""
|
196 |
-
):
|
197 |
-
llm = load_llm(model, api_key, temperature, max_length)
|
198 |
-
if llm is None:
|
199 |
-
print("Failed to load LLM. Aborting operation.")
|
200 |
-
return None, None
|
201 |
-
try:
|
202 |
-
output = llm.invoke(prompt).content
|
203 |
-
return output, None
|
204 |
-
except Exception as e:
|
205 |
-
print(f"An error occurred while running the model: {e}")
|
206 |
-
return None, None
|
207 |
-
|
208 |
-
|
209 |
-
def generate(
|
210 |
-
prompt: str,
|
211 |
-
topic: str,
|
212 |
-
model: str,
|
213 |
-
url_content: dict,
|
214 |
-
path: list[str],
|
215 |
-
temperature: float = 1.0,
|
216 |
-
max_length: int = 2048,
|
217 |
-
api_key: str = "",
|
218 |
-
sys_message="",
|
219 |
-
):
|
220 |
-
return generate_rag(prompt, topic, model, url_content, path, temperature, max_length, api_key, sys_message)
|
221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|