Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from langchain_community.document_loaders import PyMuPDFLoader
|
3 |
+
from langchain_core.documents import Document
|
4 |
+
from langchain_community.embeddings.sentence_transformer import (
|
5 |
+
SentenceTransformerEmbeddings,
|
6 |
+
)
|
7 |
+
from langchain.schema import StrOutputParser
|
8 |
+
from langchain_community.vectorstores import Chroma
|
9 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
10 |
+
from langchain import hub
|
11 |
+
from langchain_core.output_parsers import StrOutputParser
|
12 |
+
from langchain_core.runnables import RunnablePassthrough
|
13 |
+
from langchain_groq import ChatGroq
|
14 |
+
from langchain_openai import ChatOpenAI
|
15 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
16 |
+
from langchain_anthropic import ChatAnthropic
|
17 |
+
from dotenv import load_dotenv
|
18 |
+
from langchain_core.output_parsers import XMLOutputParser
|
19 |
+
from langchain.prompts import ChatPromptTemplate
|
20 |
+
|
21 |
+
load_dotenv()
|
22 |
+
|
23 |
+
# suppress grpc and glog logs for gemini
|
24 |
+
os.environ["GRPC_VERBOSITY"] = "ERROR"
|
25 |
+
os.environ["GLOG_minloglevel"] = "2"
|
26 |
+
|
27 |
+
# RAG parameters
|
28 |
+
CHUNK_SIZE = 1024
|
29 |
+
CHUNK_OVERLAP = CHUNK_SIZE // 8
|
30 |
+
K = 10
|
31 |
+
FETCH_K = 20
|
32 |
+
|
33 |
+
llm_model_translation = {
|
34 |
+
"LLaMA 3": "llama3-70b-8192",
|
35 |
+
"OpenAI GPT 4o Mini": "gpt-4o-mini",
|
36 |
+
"OpenAI GPT 4o": "gpt-4o",
|
37 |
+
"OpenAI GPT 4": "gpt-4-turbo",
|
38 |
+
"Gemini 1.5 Pro": "gemini-1.5-pro",
|
39 |
+
"Claude Sonnet 3.5": "claude-3-5-sonnet-20240620",
|
40 |
+
}
|
41 |
+
|
42 |
+
llm_classes = {
|
43 |
+
"llama3-70b-8192": ChatGroq,
|
44 |
+
"gpt-4o-mini": ChatOpenAI,
|
45 |
+
"gpt-4o": ChatOpenAI,
|
46 |
+
"gpt-4-turbo": ChatOpenAI,
|
47 |
+
"gemini-1.5-pro": ChatGoogleGenerativeAI,
|
48 |
+
"claude-3-5-sonnet-20240620": ChatAnthropic,
|
49 |
+
}
|
50 |
+
|
51 |
+
xml_system = """You're a helpful AI assistant. Given a user prompt and some related sources, \
|
52 |
+
fulfill all the requirements of the prompt and provide citations. If a part of the generated text does \
|
53 |
+
not use any of the sources, don't put a citation for that part. Otherwise, list all sources used for that part of the answer.
|
54 |
+
At the end of each relevant part, add a citation in square brackets, numbered sequentially starting from [0], regardless of the source's original ID.
|
55 |
+
|
56 |
+
|
57 |
+
Remember, you must return both the requested text and citations. A citation consists of a VERBATIM quote that \
|
58 |
+
justifies the answer and a sequential number (starting from 0) for the quote's article. Return a citation for every quote across all articles \
|
59 |
+
that justify the answer. Use the following format for your final output:
|
60 |
+
|
61 |
+
<cited_answer>
|
62 |
+
<answer></answer>
|
63 |
+
<citations>
|
64 |
+
<citation><source_id></source_id><source></source><quote></quote></citation>
|
65 |
+
<citation><source_id></source_id><source></source><quote></quote></citation>
|
66 |
+
...
|
67 |
+
</citations>
|
68 |
+
</cited_answer>
|
69 |
+
|
70 |
+
Here are the sources:{context}"""
|
71 |
+
xml_prompt = ChatPromptTemplate.from_messages(
|
72 |
+
[("system", xml_system), ("human", "{input}")]
|
73 |
+
)
|
74 |
+
|
75 |
+
def format_docs_xml(docs: list[Document]) -> str:
|
76 |
+
formatted = []
|
77 |
+
for i, doc in enumerate(docs):
|
78 |
+
doc_str = f"""\
|
79 |
+
<source>
|
80 |
+
<source>{doc.metadata['source']}</source>
|
81 |
+
<title>{doc.metadata['title']}</title>
|
82 |
+
<article_snippet>{doc.page_content}</article_snippet>
|
83 |
+
</source>"""
|
84 |
+
formatted.append(doc_str)
|
85 |
+
return "\n\n<sources>" + "\n".join(formatted) + "</sources>"
|
86 |
+
|
87 |
+
|
88 |
+
def citations_to_html(citations_data):
|
89 |
+
if citations_data:
|
90 |
+
html_output = "<ul>"
|
91 |
+
|
92 |
+
for index, citation in enumerate(citations_data):
|
93 |
+
source_id = citation['citation'][0]['source_id']
|
94 |
+
source = citation['citation'][1]['source']
|
95 |
+
quote = citation['citation'][2]['quote']
|
96 |
+
|
97 |
+
html_output += f"""
|
98 |
+
<li>
|
99 |
+
[{index}] - "{source}" <br>
|
100 |
+
"{quote}"
|
101 |
+
</li>
|
102 |
+
"""
|
103 |
+
|
104 |
+
html_output += "</ul>"
|
105 |
+
return html_output
|
106 |
+
return ""
|
107 |
+
|
108 |
+
|
109 |
+
def load_llm(model: str, api_key: str, temperature: float = 1.0, max_length: int = 2048):
|
110 |
+
model_name = llm_model_translation.get(model)
|
111 |
+
llm_class = llm_classes.get(model_name)
|
112 |
+
if not llm_class:
|
113 |
+
raise ValueError(f"Model {model} not supported.")
|
114 |
+
try:
|
115 |
+
llm = llm_class(model_name=model_name, temperature=temperature, max_tokens=max_length)
|
116 |
+
except Exception as e:
|
117 |
+
print(f"An error occurred: {e}")
|
118 |
+
llm = None
|
119 |
+
return llm
|
120 |
+
|
121 |
+
|
122 |
+
def create_db_with_langchain(path: list[str], url_content: dict):
|
123 |
+
all_docs = []
|
124 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=CHUNK_SIZE, chunk_overlap=CHUNK_OVERLAP)
|
125 |
+
embedding_function = SentenceTransformerEmbeddings(model_name="all-mpnet-base-v2")
|
126 |
+
if path:
|
127 |
+
for file in path:
|
128 |
+
loader = PyMuPDFLoader(file)
|
129 |
+
data = loader.load()
|
130 |
+
# split it into chunks
|
131 |
+
docs = text_splitter.split_documents(data)
|
132 |
+
all_docs.extend(docs)
|
133 |
+
|
134 |
+
if url_content:
|
135 |
+
for url, content in url_content.items():
|
136 |
+
doc = Document(page_content=content, metadata={"source": url})
|
137 |
+
# split it into chunks
|
138 |
+
docs = text_splitter.split_documents([doc])
|
139 |
+
all_docs.extend(docs)
|
140 |
+
|
141 |
+
# print docs
|
142 |
+
for idx, doc in enumerate(all_docs):
|
143 |
+
print(f"Doc: {idx} | Length = {len(doc.page_content)}")
|
144 |
+
|
145 |
+
assert len(all_docs) > 0, "No PDFs or scrapped data provided"
|
146 |
+
db = Chroma.from_documents(all_docs, embedding_function)
|
147 |
+
return db
|
148 |
+
|
149 |
+
|
150 |
+
def generate_rag(
|
151 |
+
prompt: str,
|
152 |
+
topic: str,
|
153 |
+
model: str,
|
154 |
+
url_content: dict,
|
155 |
+
path: list[str],
|
156 |
+
temperature: float = 1.0,
|
157 |
+
max_length: int = 2048,
|
158 |
+
api_key: str = "",
|
159 |
+
sys_message="",
|
160 |
+
):
|
161 |
+
llm = load_llm(model, api_key, temperature, max_length)
|
162 |
+
if llm is None:
|
163 |
+
print("Failed to load LLM. Aborting operation.")
|
164 |
+
return None
|
165 |
+
db = create_db_with_langchain(path, url_content)
|
166 |
+
retriever = db.as_retriever(search_type="mmr", search_kwargs={"k": K, "fetch_k": FETCH_K})
|
167 |
+
rag_prompt = hub.pull("rlm/rag-prompt")
|
168 |
+
|
169 |
+
def format_docs(docs):
|
170 |
+
if all(isinstance(doc, Document) for doc in docs):
|
171 |
+
return "\n\n".join(doc.page_content for doc in docs)
|
172 |
+
else:
|
173 |
+
raise TypeError("All items in docs must be instances of Document.")
|
174 |
+
|
175 |
+
docs = retriever.get_relevant_documents(topic)
|
176 |
+
# formatted_docs = format_docs(docs)
|
177 |
+
# rag_chain = (
|
178 |
+
# {"context": lambda _: formatted_docs, "question": RunnablePassthrough()} | rag_prompt | llm | StrOutputParser()
|
179 |
+
# )
|
180 |
+
# return rag_chain.invoke(prompt)
|
181 |
+
|
182 |
+
formatted_docs = format_docs_xml(docs)
|
183 |
+
rag_chain = (
|
184 |
+
RunnablePassthrough.assign(context=lambda _: formatted_docs)
|
185 |
+
| xml_prompt
|
186 |
+
| llm
|
187 |
+
| XMLOutputParser()
|
188 |
+
)
|
189 |
+
result = rag_chain.invoke({"input": prompt})
|
190 |
+
return result
|
191 |
+
|
192 |
+
|
193 |
+
def process_input(topic, length, tone, format_, pdfs):
|
194 |
+
# Construct the prompt
|
195 |
+
prompt = f"Write a {format_} about {topic} in about {length} words and a {tone} tone."
|
196 |
+
|
197 |
+
# Generate the text and citations using RAG
|
198 |
+
rag_output = generate_rag(
|
199 |
+
prompt=prompt,
|
200 |
+
topic=topic,
|
201 |
+
model="OpenAI GPT 4o", # Replace with your model name or path
|
202 |
+
url_content=None,
|
203 |
+
path=pdfs,
|
204 |
+
temperature=1.0,
|
205 |
+
max_length=2048,
|
206 |
+
api_key="", # Add your API key if necessary
|
207 |
+
sys_message=""
|
208 |
+
)
|
209 |
+
|
210 |
+
# Extract generated text and citations (Assuming rag_output is a dict-like object with these keys)
|
211 |
+
generated_text = rag_output.get('answer', '')
|
212 |
+
citations = rag_output.get('citations', '')
|
213 |
+
|
214 |
+
return generated_text, citations
|
215 |
+
|
216 |
+
|
217 |
+
def generate(
|
218 |
+
prompt: str,
|
219 |
+
topic: str,
|
220 |
+
model: str,
|
221 |
+
url_content: dict,
|
222 |
+
path: list[str],
|
223 |
+
temperature: float = 1.0,
|
224 |
+
max_length: int = 2048,
|
225 |
+
api_key: str = "",
|
226 |
+
sys_message="",
|
227 |
+
):
|
228 |
+
return generate_rag(prompt, topic, model, url_content, path, temperature, max_length, api_key, sys_message)
|
229 |
+
|
230 |
+
def create_app():
|
231 |
+
with gr.Blocks() as app:
|
232 |
+
with gr.Row():
|
233 |
+
topic_input = gr.Textbox(
|
234 |
+
label="Topic",
|
235 |
+
placeholder="Enter the main topic of your article",
|
236 |
+
elem_classes="input-highlight-pink",
|
237 |
+
)
|
238 |
+
length_input = gr.Slider(
|
239 |
+
minimum=50,
|
240 |
+
maximum=5000,
|
241 |
+
step=50,
|
242 |
+
value=300,
|
243 |
+
label="Article Length",
|
244 |
+
elem_classes="input-highlight-pink",
|
245 |
+
)
|
246 |
+
tone_input = gr.Dropdown(
|
247 |
+
choices=[
|
248 |
+
"Formal",
|
249 |
+
"Informal",
|
250 |
+
"Technical",
|
251 |
+
"Conversational",
|
252 |
+
"Journalistic",
|
253 |
+
"Academic",
|
254 |
+
"Creative",
|
255 |
+
],
|
256 |
+
value="Formal",
|
257 |
+
label="Writing Style",
|
258 |
+
elem_classes="input-highlight-yellow",
|
259 |
+
)
|
260 |
+
format_input = gr.Dropdown(
|
261 |
+
choices=[
|
262 |
+
"Article",
|
263 |
+
"Essay",
|
264 |
+
"Blog post",
|
265 |
+
"Report",
|
266 |
+
"Research paper",
|
267 |
+
"News article",
|
268 |
+
"White paper",
|
269 |
+
"Email",
|
270 |
+
"LinkedIn post",
|
271 |
+
"X (Twitter) post",
|
272 |
+
"Instagram Video Content",
|
273 |
+
"TikTok Video Content",
|
274 |
+
"Facebook post",
|
275 |
+
],
|
276 |
+
value="Article",
|
277 |
+
label="Format",
|
278 |
+
elem_classes="input-highlight-turquoise",
|
279 |
+
)
|
280 |
+
|
281 |
+
pdf_input = gr.File(label="Upload PDFs", file_types=["pdf"], multiple=True)
|
282 |
+
generate_button = gr.Button("Generate")
|
283 |
+
|
284 |
+
generated_text_output = gr.Textbox(label="Generated Text", lines=10)
|
285 |
+
citations_output = gr.Textbox(label="Citations", lines=10)
|
286 |
+
|
287 |
+
generate_button.click(
|
288 |
+
fn=process_input,
|
289 |
+
inputs=[topic_input, length_input, tone_input, format_input, pdf_input],
|
290 |
+
outputs=[generated_text_output, citations_output]
|
291 |
+
)
|
292 |
+
|
293 |
+
return app
|
294 |
+
|
295 |
+
# Run the app
|
296 |
+
app = create_app()
|
297 |
+
app.launch()
|