Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,37 +0,0 @@
|
|
1 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
2 |
-
import streamlit as st
|
3 |
-
import torch
|
4 |
-
|
5 |
-
@st.cache_resource
|
6 |
-
def load_model(cp_path):
|
7 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(cp_path)
|
8 |
-
return model
|
9 |
-
|
10 |
-
@st.cache_resource
|
11 |
-
def load_tokenizer(path):
|
12 |
-
tokenizer = AutoTokenizer.from_pretrained(path)
|
13 |
-
|
14 |
-
cp_aug = 'minnehwg/finetune-newwiki-summarization-ver-augmented2'
|
15 |
-
cp_org = 'minnehwg/finetune-newwiki-summarization-ver2'
|
16 |
-
|
17 |
-
model_org = load_model(cp_org)
|
18 |
-
model_aug = AutoModelForSeq2SeqLM.from_pretrained(cp_aug)
|
19 |
-
tokenizer = load_tokenizer("VietAI/vit5-base")
|
20 |
-
|
21 |
-
def summarize(text, model, tokenizer, num_beams=4, device='cpu'):
|
22 |
-
model.eval()
|
23 |
-
model.to(device)
|
24 |
-
inputs = tokenizer.encode(text, return_tensors="pt", max_length=1024, truncation=True, padding = True).to(device)
|
25 |
-
with torch.no_grad():
|
26 |
-
summary_ids = model.generate(inputs, max_length=256, num_beams=num_beams)
|
27 |
-
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
28 |
-
return summary
|
29 |
-
|
30 |
-
if text:
|
31 |
-
re1 = summarize(model_org, tokenizer, text)
|
32 |
-
re2 = summarize(model_aug, tokenizer, text)
|
33 |
-
out = {
|
34 |
-
'Result from model with original data': re1,
|
35 |
-
'Result from model with augmented data': re2
|
36 |
-
}
|
37 |
-
st.json(out)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|