Spaces:
Runtime error
Runtime error
File size: 4,360 Bytes
b222b37 dc6ec96 b222b37 9a3fa77 b222b37 e0d5b7a b222b37 915c9b5 b222b37 4b73186 b222b37 4b73186 b222b37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
from datasets import Dataset
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, DataCollatorForSeq2Seq, Seq2SeqTrainer, TrainingArguments
from youtube_transcript_api import YouTubeTranscriptApi
from deepmultilingualpunctuation import PunctuationModel
from googletrans import Translator
import time
import torch
import re
def load_model(cp):
tokenizer = AutoTokenizer.from_pretrained("VietAI/vit5-base")
model = AutoModelForSeq2SeqLM.from_pretrained(cp)
return tokenizer, model
def summarize(text, model, tokenizer, num_beams=4, device='cpu'):
model.to(device)
inputs = tokenizer.encode(text, return_tensors="pt", max_length=1024, truncation=True, padding = True).to(device)
with torch.no_grad():
summary_ids = model.generate(inputs, max_length=256, num_beams=num_beams)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
return summary
def processed(text):
processed_text = text.replace('\n', ' ')
processed_text = processed_text.lower()
return processed_text
def get_subtitles(video_url):
try:
video_id = video_url.split("v=")[1]
transcript = YouTubeTranscriptApi.get_transcript(video_id, languages=['en'])
subs = " ".join(entry['text'] for entry in transcript)
print(subs)
return transcript, subs
except Exception as e:
return [], f"An error occurred: {e}"
def restore_punctuation(text):
model = PunctuationModel()
result = model.restore_punctuation(text)
return result
def translate_long(text, language='vi'):
translator = Translator()
limit = 4700
chunks = []
current_chunk = ''
sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', text)
for sentence in sentences:
if len(current_chunk) + len(sentence) <= limit:
current_chunk += sentence.strip() + ' '
else:
chunks.append(current_chunk.strip())
current_chunk = sentence.strip() + ' '
if current_chunk:
chunks.append(current_chunk.strip())
translated_text = ''
for chunk in chunks:
try:
time.sleep(1)
translation = translator.translate(chunk, dest=language)
translated_text += translation.text + ' '
except Exception as e:
translated_text += chunk + ' '
return translated_text.strip()
def split_into_chunks(text, max_words=800, overlap_sentences=2):
sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', text)
chunks = []
current_chunk = []
current_word_count = 0
for sentence in sentences:
word_count = len(sentence.split())
if current_word_count + word_count <= max_words:
current_chunk.append(sentence)
current_word_count += word_count
else:
if len(current_chunk) >= overlap_sentences:
overlap = current_chunk[-overlap_sentences:]
chunks.append(' '.join(current_chunk))
current_chunk = current_chunk[-overlap_sentences:] + [sentence]
current_word_count = sum(len(sent.split()) for sent in current_chunk)
if current_chunk:
if len(current_chunk) >= overlap_sentences:
overlap = current_chunk[-overlap_sentences:]
chunks.append(' '.join(current_chunk))
return chunks
def post_processing(text):
sentences = re.split(r'(?<=[.!?])\s*', text)
for i in range(len(sentences)):
if sentences[i]:
sentences[i] = sentences[i][0].upper() + sentences[i][1:]
text = " ".join(sentences)
return text
def display(text):
sentences = re.split(r'(?<=[.!?])\s*', text)
unique_sentences = list(dict.fromkeys(sentences[:-1]))
formatted_sentences = [f"• {sentence}" for sentence in unique_sentences]
return formatted_sentences
def pipeline(url, model, tokenizer):
trans, sub = get_subtitles(url)
sub = restore_punctuation(sub)
vie_sub = translate_long(sub)
vie_sub = processed(vie_sub)
chunks = split_into_chunks(vie_sub, 700, 2)
sum_para = []
for i in chunks:
tmp = summarize(i, model, tokenizer, num_beams=3)
sum_para.append(tmp)
suma = ''.join(sum_para)
del sub, vie_sub, sum_para, chunks
suma = post_processing(suma)
re = display(suma)
return re |