Spaces:
Running
Running
yoel
commited on
Commit
·
d57909e
1
Parent(s):
24b78f9
Refactor: elimina soporte para modelo preentrenado, simplifica interfaces y agrega flake.nix
Browse files- app.py +3 -6
- evaluation.py +5 -10
- flake.lock +78 -0
- flake.nix +40 -0
- generate_models.py +3 -4
- models.py +18 -56
- shell.nix +0 -19
app.py
CHANGED
@@ -10,8 +10,8 @@ etiquetas, num_clases, codigo = cargar_etiquetas()
|
|
10 |
test_dataloader = cargar_dataset(codigo)
|
11 |
|
12 |
|
13 |
-
def interface_wrapper(model_file
|
14 |
-
return evaluate_interface(model_file,
|
15 |
|
16 |
|
17 |
# Interfaz de Gradio
|
@@ -19,12 +19,9 @@ demo = gr.Interface(
|
|
19 |
fn=interface_wrapper,
|
20 |
inputs=[
|
21 |
gr.File(label="Archivo del modelo (.safetensor)"),
|
22 |
-
gr.Radio(
|
23 |
-
["pre_entrenado", "desde_cero"], label="Tipo de modelo", value="desde_cero"
|
24 |
-
),
|
25 |
],
|
26 |
outputs=gr.Textbox(label="Resultado", lines=1),
|
27 |
-
title="Evaluador de modelos
|
28 |
description="Carga un archivo .safetensor y evalúa su precisión en el conjunto de datos de evaluación.",
|
29 |
)
|
30 |
|
|
|
10 |
test_dataloader = cargar_dataset(codigo)
|
11 |
|
12 |
|
13 |
+
def interface_wrapper(model_file):
|
14 |
+
return evaluate_interface(model_file, num_clases, test_dataloader)
|
15 |
|
16 |
|
17 |
# Interfaz de Gradio
|
|
|
19 |
fn=interface_wrapper,
|
20 |
inputs=[
|
21 |
gr.File(label="Archivo del modelo (.safetensor)"),
|
|
|
|
|
|
|
22 |
],
|
23 |
outputs=gr.Textbox(label="Resultado", lines=1),
|
24 |
+
title="Evaluador de modelos",
|
25 |
description="Carga un archivo .safetensor y evalúa su precisión en el conjunto de datos de evaluación.",
|
26 |
)
|
27 |
|
evaluation.py
CHANGED
@@ -1,15 +1,12 @@
|
|
1 |
import torch
|
2 |
from safetensors.torch import load_model
|
3 |
-
from models import FromZero
|
4 |
from utils import multiclass_accuracy
|
5 |
|
6 |
|
7 |
-
def cargar_evaluar_modelo(archivo,
|
8 |
try:
|
9 |
-
|
10 |
-
modelo = PreTrained(num_clases)
|
11 |
-
elif tipo_modelo == "desde_cero":
|
12 |
-
modelo = FromZero(num_clases)
|
13 |
|
14 |
load_model(modelo, archivo)
|
15 |
modelo.eval()
|
@@ -30,7 +27,7 @@ def cargar_evaluar_modelo(archivo, tipo_modelo, num_clases, test_dataloader):
|
|
30 |
return f"Error: {str(e)}"
|
31 |
|
32 |
|
33 |
-
def evaluate_interface(model_file,
|
34 |
if model_file is None:
|
35 |
return "Por favor, carga un archivo .safetensor"
|
36 |
|
@@ -41,9 +38,7 @@ def evaluate_interface(model_file, model_type, num_clases, test_dataloader):
|
|
41 |
return "Por favor, carga un archivo con extensión .safetensor o .safetensors"
|
42 |
|
43 |
# Evaluamos el modelo
|
44 |
-
accuracy = cargar_evaluar_modelo(
|
45 |
-
model_file.name, model_type, num_clases, test_dataloader
|
46 |
-
)
|
47 |
|
48 |
if isinstance(accuracy, float):
|
49 |
return f"Precisión del modelo: {accuracy*100:.2f}%"
|
|
|
1 |
import torch
|
2 |
from safetensors.torch import load_model
|
3 |
+
from models import FromZero
|
4 |
from utils import multiclass_accuracy
|
5 |
|
6 |
|
7 |
+
def cargar_evaluar_modelo(archivo, num_clases, test_dataloader):
|
8 |
try:
|
9 |
+
modelo = FromZero(num_clases)
|
|
|
|
|
|
|
10 |
|
11 |
load_model(modelo, archivo)
|
12 |
modelo.eval()
|
|
|
27 |
return f"Error: {str(e)}"
|
28 |
|
29 |
|
30 |
+
def evaluate_interface(model_file, num_clases, test_dataloader):
|
31 |
if model_file is None:
|
32 |
return "Por favor, carga un archivo .safetensor"
|
33 |
|
|
|
38 |
return "Por favor, carga un archivo con extensión .safetensor o .safetensors"
|
39 |
|
40 |
# Evaluamos el modelo
|
41 |
+
accuracy = cargar_evaluar_modelo(model_file.name, num_clases, test_dataloader)
|
|
|
|
|
42 |
|
43 |
if isinstance(accuracy, float):
|
44 |
return f"Precisión del modelo: {accuracy*100:.2f}%"
|
flake.lock
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nodes": {
|
3 |
+
"flake-utils": {
|
4 |
+
"inputs": {
|
5 |
+
"systems": "systems"
|
6 |
+
},
|
7 |
+
"locked": {
|
8 |
+
"lastModified": 1731533236,
|
9 |
+
"narHash": "sha256-l0KFg5HjrsfsO/JpG+r7fRrqm12kzFHyUHqHCVpMMbI=",
|
10 |
+
"owner": "numtide",
|
11 |
+
"repo": "flake-utils",
|
12 |
+
"rev": "11707dc2f618dd54ca8739b309ec4fc024de578b",
|
13 |
+
"type": "github"
|
14 |
+
},
|
15 |
+
"original": {
|
16 |
+
"owner": "numtide",
|
17 |
+
"repo": "flake-utils",
|
18 |
+
"type": "github"
|
19 |
+
}
|
20 |
+
},
|
21 |
+
"nixpkgs": {
|
22 |
+
"locked": {
|
23 |
+
"lastModified": 1753749649,
|
24 |
+
"narHash": "sha256-+jkEZxs7bfOKfBIk430K+tK9IvXlwzqQQnppC2ZKFj4=",
|
25 |
+
"owner": "NixOS",
|
26 |
+
"repo": "nixpkgs",
|
27 |
+
"rev": "1f08a4df998e21f4e8be8fb6fbf61d11a1a5076a",
|
28 |
+
"type": "github"
|
29 |
+
},
|
30 |
+
"original": {
|
31 |
+
"owner": "NixOS",
|
32 |
+
"ref": "nixos-25.05",
|
33 |
+
"repo": "nixpkgs",
|
34 |
+
"type": "github"
|
35 |
+
}
|
36 |
+
},
|
37 |
+
"root": {
|
38 |
+
"inputs": {
|
39 |
+
"flake-utils": "flake-utils",
|
40 |
+
"nixpkgs": "nixpkgs",
|
41 |
+
"unstable": "unstable"
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"systems": {
|
45 |
+
"locked": {
|
46 |
+
"lastModified": 1681028828,
|
47 |
+
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
|
48 |
+
"owner": "nix-systems",
|
49 |
+
"repo": "default",
|
50 |
+
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
|
51 |
+
"type": "github"
|
52 |
+
},
|
53 |
+
"original": {
|
54 |
+
"owner": "nix-systems",
|
55 |
+
"repo": "default",
|
56 |
+
"type": "github"
|
57 |
+
}
|
58 |
+
},
|
59 |
+
"unstable": {
|
60 |
+
"locked": {
|
61 |
+
"lastModified": 1753694789,
|
62 |
+
"narHash": "sha256-cKgvtz6fKuK1Xr5LQW/zOUiAC0oSQoA9nOISB0pJZqM=",
|
63 |
+
"owner": "NixOS",
|
64 |
+
"repo": "nixpkgs",
|
65 |
+
"rev": "dc9637876d0dcc8c9e5e22986b857632effeb727",
|
66 |
+
"type": "github"
|
67 |
+
},
|
68 |
+
"original": {
|
69 |
+
"owner": "NixOS",
|
70 |
+
"ref": "nixos-unstable",
|
71 |
+
"repo": "nixpkgs",
|
72 |
+
"type": "github"
|
73 |
+
}
|
74 |
+
}
|
75 |
+
},
|
76 |
+
"root": "root",
|
77 |
+
"version": 7
|
78 |
+
}
|
flake.nix
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
description = "Flake para un entorno Jupyter + IA + Fish 💻🐟";
|
3 |
+
|
4 |
+
inputs = {
|
5 |
+
nixpkgs.url = "github:NixOS/nixpkgs/nixos-25.05";
|
6 |
+
unstable.url = "github:NixOS/nixpkgs/nixos-unstable";
|
7 |
+
flake-utils.url = "github:numtide/flake-utils";
|
8 |
+
};
|
9 |
+
|
10 |
+
outputs = {
|
11 |
+
self,
|
12 |
+
nixpkgs,
|
13 |
+
unstable,
|
14 |
+
flake-utils,
|
15 |
+
}:
|
16 |
+
flake-utils.lib.eachDefaultSystem (system: let
|
17 |
+
pkgs = import nixpkgs {inherit system;};
|
18 |
+
unpkgs = import unstable {inherit system;};
|
19 |
+
in {
|
20 |
+
devShells.default = pkgs.mkShell {
|
21 |
+
name = "impurejupyterenv";
|
22 |
+
|
23 |
+
buildInputs = [
|
24 |
+
(pkgs.python3.withPackages (ps:
|
25 |
+
with ps; [
|
26 |
+
gradio
|
27 |
+
torch
|
28 |
+
torchvision
|
29 |
+
safetensors
|
30 |
+
torchaudio
|
31 |
+
datasets
|
32 |
+
]))
|
33 |
+
];
|
34 |
+
|
35 |
+
shellHook = ''
|
36 |
+
exec fish
|
37 |
+
'';
|
38 |
+
};
|
39 |
+
});
|
40 |
+
}
|
generate_models.py
CHANGED
@@ -1,20 +1,19 @@
|
|
1 |
import os
|
2 |
import torch
|
3 |
-
from models import FromZero
|
4 |
from safetensors.torch import save_model
|
5 |
from utils import cargar_etiquetas
|
6 |
|
|
|
7 |
def main():
|
8 |
# Crear la carpeta model_test si no existe
|
9 |
os.makedirs("model_test", exist_ok=True)
|
10 |
-
_,num_classes,_ = cargar_etiquetas()
|
11 |
# Crear instancias de los modelos
|
12 |
from_zero_model = FromZero(num_classes=num_classes)
|
13 |
-
pretrained_model = PreTrained(num_classes=num_classes)
|
14 |
|
15 |
# Guardar los modelos
|
16 |
save_model(from_zero_model, "model_test/from_zero_model.safetensor")
|
17 |
-
save_model(pretrained_model, "model_test/pretrained_model.safetensor")
|
18 |
|
19 |
print("Los modelos han sido creados y guardados en la carpeta 'model_test'")
|
20 |
|
|
|
1 |
import os
|
2 |
import torch
|
3 |
+
from models import FromZero
|
4 |
from safetensors.torch import save_model
|
5 |
from utils import cargar_etiquetas
|
6 |
|
7 |
+
|
8 |
def main():
|
9 |
# Crear la carpeta model_test si no existe
|
10 |
os.makedirs("model_test", exist_ok=True)
|
11 |
+
_, num_classes, _ = cargar_etiquetas()
|
12 |
# Crear instancias de los modelos
|
13 |
from_zero_model = FromZero(num_classes=num_classes)
|
|
|
14 |
|
15 |
# Guardar los modelos
|
16 |
save_model(from_zero_model, "model_test/from_zero_model.safetensor")
|
|
|
17 |
|
18 |
print("Los modelos han sido creados y guardados en la carpeta 'model_test'")
|
19 |
|
models.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
-
|
|
|
2 |
import torch.nn as nn
|
3 |
from torchvision import models
|
4 |
|
@@ -15,67 +16,44 @@ class Stem(nn.Module):
|
|
15 |
x = self.conv(x)
|
16 |
return x
|
17 |
|
18 |
-
|
19 |
class ResidualBlock(nn.Module):
|
20 |
def __init__(self, in_channels, out_channels, stride=1):
|
21 |
-
super(
|
22 |
self.conv1 = nn.Sequential(
|
23 |
-
nn.Conv2d(in_channels, out_channels
|
24 |
-
nn.BatchNorm2d(out_channels
|
25 |
-
nn.
|
26 |
)
|
27 |
self.conv2 = nn.Sequential(
|
28 |
-
nn.Conv2d(
|
29 |
-
out_channels // 4,
|
30 |
-
out_channels // 4,
|
31 |
-
stride=stride,
|
32 |
-
kernel_size=3,
|
33 |
-
padding=1,
|
34 |
-
),
|
35 |
-
nn.BatchNorm2d(out_channels // 4),
|
36 |
-
nn.ReLU(inplace=True),
|
37 |
-
)
|
38 |
-
|
39 |
-
self.conv3 = nn.Sequential(
|
40 |
-
nn.Conv2d(out_channels // 4, out_channels, kernel_size=1, stride=1),
|
41 |
nn.BatchNorm2d(out_channels),
|
42 |
)
|
43 |
|
44 |
self.shortcut = (
|
45 |
nn.Identity()
|
46 |
-
if in_channels == out_channels
|
47 |
else nn.Sequential(
|
48 |
-
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride),
|
49 |
nn.BatchNorm2d(out_channels),
|
50 |
)
|
51 |
)
|
52 |
|
53 |
-
self.
|
54 |
|
55 |
def forward(self, x):
|
56 |
identity = self.shortcut(x)
|
57 |
x = self.conv1(x)
|
58 |
x = self.conv2(x)
|
59 |
-
x = self.conv3(x)
|
60 |
x += identity
|
61 |
-
|
62 |
-
return x
|
63 |
-
|
64 |
-
|
65 |
-
def make_layer(in_channels, out_channels, block, num_blocks):
|
66 |
-
layers = []
|
67 |
-
for i in range(num_blocks):
|
68 |
-
layers.append(block(in_channels, out_channels))
|
69 |
-
in_channels = out_channels
|
70 |
-
|
71 |
-
return layers
|
72 |
-
|
73 |
|
74 |
class FromZero(nn.Module):
|
75 |
def __init__(self, num_classes=10):
|
76 |
super(FromZero, self).__init__()
|
77 |
self.stem = Stem()
|
78 |
-
self.layer1 = nn.Sequential(
|
|
|
|
|
79 |
self.layer2 = nn.Sequential(
|
80 |
ResidualBlock(64, 128, stride=2), ResidualBlock(128, 128)
|
81 |
)
|
@@ -84,12 +62,14 @@ class FromZero(nn.Module):
|
|
84 |
)
|
85 |
self.layer4 = nn.Sequential(
|
86 |
ResidualBlock(256, 512, stride=2), ResidualBlock(512, 512)
|
87 |
-
)
|
88 |
|
89 |
self.flatten = nn.Flatten()
|
90 |
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
91 |
-
self.fc = nn.
|
92 |
|
|
|
|
|
93 |
def forward(self, x):
|
94 |
x = self.stem(x)
|
95 |
x = self.layer1(x)
|
@@ -101,21 +81,3 @@ class FromZero(nn.Module):
|
|
101 |
x = self.fc(x)
|
102 |
return x
|
103 |
|
104 |
-
|
105 |
-
class PreTrained(nn.Module):
|
106 |
-
def __init__(self, num_classes):
|
107 |
-
super().__init__()
|
108 |
-
self.model = models.resnet18(
|
109 |
-
weights=models.ResNet18_Weights.IMAGENET1K_V1, progress=True
|
110 |
-
)
|
111 |
-
for param in self.model.parameters():
|
112 |
-
param.requires_grad = False
|
113 |
-
|
114 |
-
self.model.fc = nn.Sequential(
|
115 |
-
nn.Linear(self.model.fc.in_features, 512),
|
116 |
-
nn.ReLU(inplace=True),
|
117 |
-
nn.Linear(512, num_classes),
|
118 |
-
)
|
119 |
-
|
120 |
-
def forward(self, x):
|
121 |
-
return self.model(x)
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
import torch.nn as nn
|
4 |
from torchvision import models
|
5 |
|
|
|
16 |
x = self.conv(x)
|
17 |
return x
|
18 |
|
|
|
19 |
class ResidualBlock(nn.Module):
|
20 |
def __init__(self, in_channels, out_channels, stride=1):
|
21 |
+
super().__init__()
|
22 |
self.conv1 = nn.Sequential(
|
23 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False),
|
24 |
+
nn.BatchNorm2d(out_channels),
|
25 |
+
nn.LeakyReLU(inplace=True),
|
26 |
)
|
27 |
self.conv2 = nn.Sequential(
|
28 |
+
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
nn.BatchNorm2d(out_channels),
|
30 |
)
|
31 |
|
32 |
self.shortcut = (
|
33 |
nn.Identity()
|
34 |
+
if in_channels == out_channels and stride == 1
|
35 |
else nn.Sequential(
|
36 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
|
37 |
nn.BatchNorm2d(out_channels),
|
38 |
)
|
39 |
)
|
40 |
|
41 |
+
self.act = nn.LeakyReLU(inplace=True)
|
42 |
|
43 |
def forward(self, x):
|
44 |
identity = self.shortcut(x)
|
45 |
x = self.conv1(x)
|
46 |
x = self.conv2(x)
|
|
|
47 |
x += identity
|
48 |
+
return self.act(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
class FromZero(nn.Module):
|
51 |
def __init__(self, num_classes=10):
|
52 |
super(FromZero, self).__init__()
|
53 |
self.stem = Stem()
|
54 |
+
self.layer1 = nn.Sequential(
|
55 |
+
ResidualBlock(64, 64), ResidualBlock(64, 64)
|
56 |
+
)
|
57 |
self.layer2 = nn.Sequential(
|
58 |
ResidualBlock(64, 128, stride=2), ResidualBlock(128, 128)
|
59 |
)
|
|
|
62 |
)
|
63 |
self.layer4 = nn.Sequential(
|
64 |
ResidualBlock(256, 512, stride=2), ResidualBlock(512, 512)
|
65 |
+
,nn.Dropout(0.2))
|
66 |
|
67 |
self.flatten = nn.Flatten()
|
68 |
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
69 |
+
self.fc = nn.Sequential(
|
70 |
|
71 |
+
nn.Linear(512, num_classes),
|
72 |
+
)
|
73 |
def forward(self, x):
|
74 |
x = self.stem(x)
|
75 |
x = self.layer1(x)
|
|
|
81 |
x = self.fc(x)
|
82 |
return x
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
shell.nix
DELETED
@@ -1,19 +0,0 @@
|
|
1 |
-
{ pkgs ? import <nixpkgs> {} }:
|
2 |
-
|
3 |
-
pkgs.mkShell {
|
4 |
-
buildInputs = [
|
5 |
-
(pkgs.python3.withPackages(ps: with ps; [
|
6 |
-
datasets
|
7 |
-
torch
|
8 |
-
torchvision
|
9 |
-
torchaudio
|
10 |
-
safetensors
|
11 |
-
gradio
|
12 |
-
]))
|
13 |
-
|
14 |
-
];
|
15 |
-
|
16 |
-
shellHook = ''
|
17 |
-
exec fish
|
18 |
-
'';
|
19 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|