File size: 6,966 Bytes
ba5386d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72a2b4c
 
 
ba5386d
72a2b4c
 
ba5386d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import torch
import torch.nn as nn
from torchvision import models
import gradio as gr
import os
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from safetensors.torch import load_model
from datasets import load_dataset


# modelos
class Stem(nn.Module):
    def __init__(self):
        super(Stem, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=7, stride=2),
            nn.MaxPool2d(kernel_size=3, stride=2),
        )

    def forward(self, x):
        x = self.conv(x)
        return x


class ResidualBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1):
        super(ResidualBlock, self).__init__()
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channels, out_channels // 4, stride=1, kernel_size=1),
            nn.BatchNorm2d(out_channels // 4),
            nn.ReLU(inplace=True),
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(
                out_channels // 4,
                out_channels // 4,
                stride=stride,
                kernel_size=3,
                padding=1,
            ),
            nn.BatchNorm2d(out_channels // 4),
            nn.ReLU(inplace=True),
        )

        self.conv3 = nn.Sequential(
            nn.Conv2d(out_channels // 4, out_channels, kernel_size=1, stride=1),
            nn.BatchNorm2d(out_channels),
        )

        self.shortcut = (
            nn.Identity()
            if in_channels == out_channels
            else nn.Sequential(
                nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride),
                nn.BatchNorm2d(out_channels),
            )
        )

        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        identity = self.shortcut(x)
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x += identity
        x = self.relu(x)
        return x


def make_layer(in_channels, out_channels, block, num_blocks):
    layers = []
    for i in range(num_blocks):
        layers.append(block(in_channels, out_channels))
        in_channels = out_channels

    return layers


class FromZero(nn.Module):
    def __init__(self, num_classes=10):
        super(FromZero, self).__init__()
        self.stem = Stem()
        self.layer1 = nn.Sequential(*make_layer(64, 64, ResidualBlock, 2))
        self.layer2 = nn.Sequential(
            ResidualBlock(64, 128, stride=2), ResidualBlock(128, 128)
        )
        self.layer3 = nn.Sequential(
            ResidualBlock(128, 256, stride=2), ResidualBlock(256, 256)
        )
        self.layer4 = nn.Sequential(
            ResidualBlock(256, 512, stride=2), ResidualBlock(512, 512)
        )

        self.flatten = nn.Flatten()
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512, num_classes)

    def forward(self, x):
        x = self.stem(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.avgpool(x)
        x = self.flatten(x)
        x = self.fc(x)
        return x


class PreTrained(nn.Module):
    def __init__(self, num_classes):
        super().__init__()
        self.model = models.resnet18(
            weights=models.ResNet18_Weights.IMAGENET1K_V1, progress=True
        )
        for param in self.model.parameters():
            param.requires_grad = False

        self.model.fc = nn.Sequential(
            nn.Linear(self.model.fc.in_features, 512),
            nn.ReLU(inplace=True),
            nn.Linear(512, num_classes),
        )

    def forward(self, x):
        return self.model(x)


with open("etiquetas.txt", "r") as f:
    etiquetas = f.read().splitlines()[1:]
num_clases = len(etiquetas)
codigo = {etiqueta.lower(): i for i, etiqueta in enumerate(etiquetas)}


def codificar_etiqueta(etiqueta):
    return codigo[etiqueta]

import os

key = os.environ.get("HFKEY")
dataset = load_dataset(
    "minoruskore/elementosparaevaluarclases", split="train",
    token=key
)


class imagenDataset(Dataset):
    def __init__(self, dt, transform):
        self.dt = dt
        self.tr = transform

    def __len__(self):
        return len(self.dt)

    def __getitem__(self, idx):
        row = self.dt[idx]
        imagen = row["image"].convert("RGB")
        label = row["etiqueta"].lower()
        label = codificar_etiqueta(label)
        imagen = self.tr(imagen)
        return imagen, label


tr = transforms.Compose([transforms.Resize([256, 256]), transforms.ToTensor()])
test_dataset = imagenDataset(dataset, transform=tr)
cpus = os.cpu_count()
test_dataloader = DataLoader(test_dataset, batch_size=500, num_workers=cpus)


def multiclass_accuracy(predictions, labels):

    # Obtén las clases predichas (la clase con la mayor probabilidad)
    _, predicted_classes = torch.max(predictions, 1)

    # Compara las clases predichas con las etiquetas verdaderas
    correct_predictions = (predicted_classes == labels).sum().item()

    # Calcula la precisión
    accuracy = correct_predictions / labels.size(0)

    return accuracy


def cargar_evaluar_modelo(archivo, tipo_modelo):
    try:
        if tipo_modelo == "tarea_7":
            modelo = FromZero(num_clases)

        elif tipo_modelo == "tarea_8":
            modelo = PreTrained(num_clases)

        load_model(modelo, archivo)
        modelo.eval()
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        modelo.to(device)
        accuracy = 0
        with torch.no_grad():
            for imagenes, etiquetas in test_dataloader:
                imagenes = imagenes.to(device)
                etiquetas = etiquetas.to(device)
                predictions = modelo(imagenes)
                accuracy += multiclass_accuracy(predictions, etiquetas)
        accuracy = accuracy / len(test_dataloader)
        return accuracy
    except Exception as e:
        return f"Error: {str(e)}"


def evaluate_interface(model_file, model_type):
    if model_file is None:
        return "Por favor, carga un archivo .safetensor"

    # Verificamos que el archivo sea .safetensor
    if not model_file.name.endswith(".safetensor"):
        return "Por favor, carga un archivo con extensión .safetensor"

    # Evaluamos el modelo
    accuracy = cargar_evaluar_modelo(
        model_file.name,
        model_type,
    )

    if isinstance(accuracy, float):
        return f"Precisión del modelo: {accuracy*100:.2f}%"
    else:
        return accuracy


demo = gr.Interface(
    fn=evaluate_interface,
    inputs=[
        gr.File(label="Archivo del modelo (.safetensor)"),
        gr.Radio(["tarea_7", "tarea_8"], label="Tipo de modelo", value="tarea_7"),
    ],
    outputs=gr.Textbox(label="Resultado", lines=1),
    title="Evaluador de Tareas 7 y 8",
    description="Carga un archivo .safetensor de la tarea 7 o 8 y evalúa su precisión en el conjunto de datos de evaluación.",
)

demo.launch()