File size: 3,466 Bytes
237774d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import torch
import torch.nn as nn
from torchvision import models


class Stem(nn.Module):
    def __init__(self):
        super(Stem, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=7, stride=2),
            nn.MaxPool2d(kernel_size=3, stride=2),
        )

    def forward(self, x):
        x = self.conv(x)
        return x


class ResidualBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1):
        super(ResidualBlock, self).__init__()
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channels, out_channels // 4, stride=1, kernel_size=1),
            nn.BatchNorm2d(out_channels // 4),
            nn.ReLU(inplace=True),
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(
                out_channels // 4,
                out_channels // 4,
                stride=stride,
                kernel_size=3,
                padding=1,
            ),
            nn.BatchNorm2d(out_channels // 4),
            nn.ReLU(inplace=True),
        )

        self.conv3 = nn.Sequential(
            nn.Conv2d(out_channels // 4, out_channels, kernel_size=1, stride=1),
            nn.BatchNorm2d(out_channels),
        )

        self.shortcut = (
            nn.Identity()
            if in_channels == out_channels
            else nn.Sequential(
                nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride),
                nn.BatchNorm2d(out_channels),
            )
        )

        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        identity = self.shortcut(x)
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x += identity
        x = self.relu(x)
        return x


def make_layer(in_channels, out_channels, block, num_blocks):
    layers = []
    for i in range(num_blocks):
        layers.append(block(in_channels, out_channels))
        in_channels = out_channels

    return layers


class FromZero(nn.Module):
    def __init__(self, num_classes=10):
        super(FromZero, self).__init__()
        self.stem = Stem()
        self.layer1 = nn.Sequential(*make_layer(64, 64, ResidualBlock, 2))
        self.layer2 = nn.Sequential(
            ResidualBlock(64, 128, stride=2), ResidualBlock(128, 128)
        )
        self.layer3 = nn.Sequential(
            ResidualBlock(128, 256, stride=2), ResidualBlock(256, 256)
        )
        self.layer4 = nn.Sequential(
            ResidualBlock(256, 512, stride=2), ResidualBlock(512, 512)
        )

        self.flatten = nn.Flatten()
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512, num_classes)

    def forward(self, x):
        x = self.stem(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.avgpool(x)
        x = self.flatten(x)
        x = self.fc(x)
        return x


class PreTrained(nn.Module):
    def __init__(self, num_classes):
        super().__init__()
        self.model = models.resnet18(
            weights=models.ResNet18_Weights.IMAGENET1K_V1, progress=True
        )
        for param in self.model.parameters():
            param.requires_grad = False

        self.model.fc = nn.Sequential(
            nn.Linear(self.model.fc.in_features, 512),
            nn.ReLU(inplace=True),
            nn.Linear(512, num_classes),
        )

    def forward(self, x):
        return self.model(x)