Spaces:
Sleeping
Sleeping
Commit
·
ba5386d
1
Parent(s):
7039fca
Añadir implementación inicial de un modelo de evaluación de precisión con interfaz de usuario en Gradio
Browse files- app.py +238 -0
- etiquetas.txt +10 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torchvision import models
|
4 |
+
import gradio as gr
|
5 |
+
import os
|
6 |
+
from torch.utils.data import Dataset, DataLoader
|
7 |
+
from torchvision import transforms
|
8 |
+
from safetensors.torch import load_model
|
9 |
+
from datasets import load_dataset
|
10 |
+
|
11 |
+
|
12 |
+
# modelos
|
13 |
+
class Stem(nn.Module):
|
14 |
+
def __init__(self):
|
15 |
+
super(Stem, self).__init__()
|
16 |
+
self.conv = nn.Sequential(
|
17 |
+
nn.Conv2d(3, 64, kernel_size=7, stride=2),
|
18 |
+
nn.MaxPool2d(kernel_size=3, stride=2),
|
19 |
+
)
|
20 |
+
|
21 |
+
def forward(self, x):
|
22 |
+
x = self.conv(x)
|
23 |
+
return x
|
24 |
+
|
25 |
+
|
26 |
+
class ResidualBlock(nn.Module):
|
27 |
+
def __init__(self, in_channels, out_channels, stride=1):
|
28 |
+
super(ResidualBlock, self).__init__()
|
29 |
+
self.conv1 = nn.Sequential(
|
30 |
+
nn.Conv2d(in_channels, out_channels // 4, stride=1, kernel_size=1),
|
31 |
+
nn.BatchNorm2d(out_channels // 4),
|
32 |
+
nn.ReLU(inplace=True),
|
33 |
+
)
|
34 |
+
self.conv2 = nn.Sequential(
|
35 |
+
nn.Conv2d(
|
36 |
+
out_channels // 4,
|
37 |
+
out_channels // 4,
|
38 |
+
stride=stride,
|
39 |
+
kernel_size=3,
|
40 |
+
padding=1,
|
41 |
+
),
|
42 |
+
nn.BatchNorm2d(out_channels // 4),
|
43 |
+
nn.ReLU(inplace=True),
|
44 |
+
)
|
45 |
+
|
46 |
+
self.conv3 = nn.Sequential(
|
47 |
+
nn.Conv2d(out_channels // 4, out_channels, kernel_size=1, stride=1),
|
48 |
+
nn.BatchNorm2d(out_channels),
|
49 |
+
)
|
50 |
+
|
51 |
+
self.shortcut = (
|
52 |
+
nn.Identity()
|
53 |
+
if in_channels == out_channels
|
54 |
+
else nn.Sequential(
|
55 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride),
|
56 |
+
nn.BatchNorm2d(out_channels),
|
57 |
+
)
|
58 |
+
)
|
59 |
+
|
60 |
+
self.relu = nn.ReLU(inplace=True)
|
61 |
+
|
62 |
+
def forward(self, x):
|
63 |
+
identity = self.shortcut(x)
|
64 |
+
x = self.conv1(x)
|
65 |
+
x = self.conv2(x)
|
66 |
+
x = self.conv3(x)
|
67 |
+
x += identity
|
68 |
+
x = self.relu(x)
|
69 |
+
return x
|
70 |
+
|
71 |
+
|
72 |
+
def make_layer(in_channels, out_channels, block, num_blocks):
|
73 |
+
layers = []
|
74 |
+
for i in range(num_blocks):
|
75 |
+
layers.append(block(in_channels, out_channels))
|
76 |
+
in_channels = out_channels
|
77 |
+
|
78 |
+
return layers
|
79 |
+
|
80 |
+
|
81 |
+
class FromZero(nn.Module):
|
82 |
+
def __init__(self, num_classes=10):
|
83 |
+
super(FromZero, self).__init__()
|
84 |
+
self.stem = Stem()
|
85 |
+
self.layer1 = nn.Sequential(*make_layer(64, 64, ResidualBlock, 2))
|
86 |
+
self.layer2 = nn.Sequential(
|
87 |
+
ResidualBlock(64, 128, stride=2), ResidualBlock(128, 128)
|
88 |
+
)
|
89 |
+
self.layer3 = nn.Sequential(
|
90 |
+
ResidualBlock(128, 256, stride=2), ResidualBlock(256, 256)
|
91 |
+
)
|
92 |
+
self.layer4 = nn.Sequential(
|
93 |
+
ResidualBlock(256, 512, stride=2), ResidualBlock(512, 512)
|
94 |
+
)
|
95 |
+
|
96 |
+
self.flatten = nn.Flatten()
|
97 |
+
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
98 |
+
self.fc = nn.Linear(512, num_classes)
|
99 |
+
|
100 |
+
def forward(self, x):
|
101 |
+
x = self.stem(x)
|
102 |
+
x = self.layer1(x)
|
103 |
+
x = self.layer2(x)
|
104 |
+
x = self.layer3(x)
|
105 |
+
x = self.layer4(x)
|
106 |
+
x = self.avgpool(x)
|
107 |
+
x = self.flatten(x)
|
108 |
+
x = self.fc(x)
|
109 |
+
return x
|
110 |
+
|
111 |
+
|
112 |
+
class PreTrained(nn.Module):
|
113 |
+
def __init__(self, num_classes):
|
114 |
+
super().__init__()
|
115 |
+
self.model = models.resnet18(
|
116 |
+
weights=models.ResNet18_Weights.IMAGENET1K_V1, progress=True
|
117 |
+
)
|
118 |
+
for param in self.model.parameters():
|
119 |
+
param.requires_grad = False
|
120 |
+
|
121 |
+
self.model.fc = nn.Sequential(
|
122 |
+
nn.Linear(self.model.fc.in_features, 512),
|
123 |
+
nn.ReLU(inplace=True),
|
124 |
+
nn.Linear(512, num_classes),
|
125 |
+
)
|
126 |
+
|
127 |
+
def forward(self, x):
|
128 |
+
return self.model(x)
|
129 |
+
|
130 |
+
|
131 |
+
with open("etiquetas.txt", "r") as f:
|
132 |
+
etiquetas = f.read().splitlines()[1:]
|
133 |
+
num_clases = len(etiquetas)
|
134 |
+
codigo = {etiqueta.lower(): i for i, etiqueta in enumerate(etiquetas)}
|
135 |
+
|
136 |
+
|
137 |
+
def codificar_etiqueta(etiqueta):
|
138 |
+
return codigo[etiqueta]
|
139 |
+
|
140 |
+
dataset = load_dataset(
|
141 |
+
"minoruskore/elementosparaevaluarclases", split="train"
|
142 |
+
)
|
143 |
+
|
144 |
+
|
145 |
+
class imagenDataset(Dataset):
|
146 |
+
def __init__(self, dt, transform):
|
147 |
+
self.dt = dt
|
148 |
+
self.tr = transform
|
149 |
+
|
150 |
+
def __len__(self):
|
151 |
+
return len(self.dt)
|
152 |
+
|
153 |
+
def __getitem__(self, idx):
|
154 |
+
row = self.dt[idx]
|
155 |
+
imagen = row["image"].convert("RGB")
|
156 |
+
label = row["etiqueta"].lower()
|
157 |
+
label = codificar_etiqueta(label)
|
158 |
+
imagen = self.tr(imagen)
|
159 |
+
return imagen, label
|
160 |
+
|
161 |
+
|
162 |
+
tr = transforms.Compose([transforms.Resize([256, 256]), transforms.ToTensor()])
|
163 |
+
test_dataset = imagenDataset(dataset, transform=tr)
|
164 |
+
cpus = os.cpu_count()
|
165 |
+
test_dataloader = DataLoader(test_dataset, batch_size=500, num_workers=cpus)
|
166 |
+
|
167 |
+
|
168 |
+
def multiclass_accuracy(predictions, labels):
|
169 |
+
|
170 |
+
# Obtén las clases predichas (la clase con la mayor probabilidad)
|
171 |
+
_, predicted_classes = torch.max(predictions, 1)
|
172 |
+
|
173 |
+
# Compara las clases predichas con las etiquetas verdaderas
|
174 |
+
correct_predictions = (predicted_classes == labels).sum().item()
|
175 |
+
|
176 |
+
# Calcula la precisión
|
177 |
+
accuracy = correct_predictions / labels.size(0)
|
178 |
+
|
179 |
+
return accuracy
|
180 |
+
|
181 |
+
|
182 |
+
def cargar_evaluar_modelo(archivo, tipo_modelo):
|
183 |
+
try:
|
184 |
+
if tipo_modelo == "tarea_7":
|
185 |
+
modelo = FromZero(num_clases)
|
186 |
+
|
187 |
+
elif tipo_modelo == "tarea_8":
|
188 |
+
modelo = PreTrained(num_clases)
|
189 |
+
|
190 |
+
load_model(modelo, archivo)
|
191 |
+
modelo.eval()
|
192 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
193 |
+
modelo.to(device)
|
194 |
+
accuracy = 0
|
195 |
+
with torch.no_grad():
|
196 |
+
for imagenes, etiquetas in test_dataloader:
|
197 |
+
imagenes = imagenes.to(device)
|
198 |
+
etiquetas = etiquetas.to(device)
|
199 |
+
predictions = modelo(imagenes)
|
200 |
+
accuracy += multiclass_accuracy(predictions, etiquetas)
|
201 |
+
accuracy = accuracy / len(test_dataloader)
|
202 |
+
return accuracy
|
203 |
+
except Exception as e:
|
204 |
+
return f"Error: {str(e)}"
|
205 |
+
|
206 |
+
|
207 |
+
def evaluate_interface(model_file, model_type):
|
208 |
+
if model_file is None:
|
209 |
+
return "Por favor, carga un archivo .safetensor"
|
210 |
+
|
211 |
+
# Verificamos que el archivo sea .safetensor
|
212 |
+
if not model_file.name.endswith(".safetensor"):
|
213 |
+
return "Por favor, carga un archivo con extensión .safetensor"
|
214 |
+
|
215 |
+
# Evaluamos el modelo
|
216 |
+
accuracy = cargar_evaluar_modelo(
|
217 |
+
model_file.name,
|
218 |
+
model_type,
|
219 |
+
)
|
220 |
+
|
221 |
+
if isinstance(accuracy, float):
|
222 |
+
return f"Precisión del modelo: {accuracy*100:.2f}%"
|
223 |
+
else:
|
224 |
+
return accuracy
|
225 |
+
|
226 |
+
|
227 |
+
demo = gr.Interface(
|
228 |
+
fn=evaluate_interface,
|
229 |
+
inputs=[
|
230 |
+
gr.File(label="Archivo del modelo (.safetensor)"),
|
231 |
+
gr.Radio(["tarea_7", "tarea_8"], label="Tipo de modelo", value="tarea_7"),
|
232 |
+
],
|
233 |
+
outputs=gr.Textbox(label="Resultado", lines=1),
|
234 |
+
title="Evaluador de Tareas 7 y 8",
|
235 |
+
description="Carga un archivo .safetensor de la tarea 7 o 8 y evalúa su precisión en el conjunto de datos de evaluación.",
|
236 |
+
)
|
237 |
+
|
238 |
+
demo.launch()
|
etiquetas.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dummy
|
2 |
+
Ilustración
|
3 |
+
Mujer joven
|
4 |
+
Mujer mayor
|
5 |
+
Niña
|
6 |
+
Hombre joven
|
7 |
+
Hombre mayor
|
8 |
+
Niño
|
9 |
+
Perro
|
10 |
+
Gato
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
torchaudio
|
4 |
+
safetensors
|
5 |
+
torcheval
|