File size: 26,266 Bytes
2447637
1e4d53d
 
 
 
 
 
 
 
f0b9b57
 
be33f2e
 
1e4d53d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0b9b57
1e4d53d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcb2102
1e4d53d
 
 
 
fddeeda
1e4d53d
fddeeda
1e4d53d
 
fddeeda
1e4d53d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcb2102
1e4d53d
 
bcb2102
 
 
1e4d53d
bcb2102
1e4d53d
 
f0b9b57
1e4d53d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0b9b57
1e4d53d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0b9b57
bcb2102
f0b9b57
 
 
1e4d53d
bcb2102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0b9b57
 
1e4d53d
f0b9b57
1e4d53d
 
 
 
 
 
 
 
fddeeda
1e4d53d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0b9b57
 
 
1e4d53d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcb2102
 
1e4d53d
 
 
 
 
 
 
 
bcb2102
1e4d53d
 
 
 
 
 
 
 
 
 
bcb2102
f0b9b57
 
 
1e4d53d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0b9b57
 
 
1e4d53d
 
 
 
 
 
f0b9b57
 
1e4d53d
 
f0b9b57
 
1e4d53d
f0b9b57
1e4d53d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcb2102
f0b9b57
 
 
1e4d53d
 
 
 
 
 
 
 
 
 
f0b9b57
 
 
1e4d53d
 
 
 
 
 
 
 
 
f0b9b57
 
 
1e4d53d
 
 
 
 
 
be33f2e
1e4d53d
 
f0b9b57
 
 
1e4d53d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0b9b57
 
1e4d53d
 
 
 
 
2447637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be33f2e
 
 
 
2447637
 
 
be33f2e
2447637
 
 
be33f2e
 
 
 
 
2447637
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
from typing import Any, Dict,List,Union
from transformers import Pipeline
import requests
import re
from io import BytesIO
import pandas as pd
import math
import queue
from datetime import date
import time
import logging
import torch
import torch.nn.functional as F

class Predictor():

    def __init__(
            self,
            pipelines: Dict[str, Pipeline] = {},
            paths: List[str] = [],
            today: date = date.today()
        ) -> None:
        if "name" not in pipelines:
            raise ValueError("'name' pipeline is None")
        if "common" not in pipelines:
            raise ValueError("'common' pipeline is None")
        self.pipelines = pipelines
        self.today = today
        self.logger = logging.getLogger(__name__)
        self.__init_split_data()
        self.__init_schools_data(paths)
        self.__init_patterns()

    def __init_patterns(
        self
    ):
        last_name = r"[赵,钱,孙,李,周,吴,郑,王,冯,陈,楮,卫,蒋,沈,韩,杨,朱,秦,尤,许,何,吕,施,张,孔,曹,严,华,金,魏,陶,姜,戚,谢,邹,喻,"\
            +r"柏,水,窦,章,云,苏,潘,葛,奚,范,彭,郎,鲁,韦,昌,马,苗,凤,花,方,俞,任,袁,柳,酆,鲍,史,唐,费,廉,岑,薛,雷,贺,倪,汤,滕,殷,罗," \
                    + r"毕,郝,邬,安,常,乐,于,时,傅,皮,卞,齐,康,伍,余,元,卜,顾,孟,平,黄,和,穆,萧,尹,姚,邵,湛,汪,祁,毛,禹,狄,米,贝,明,臧,计,伏,成,戴,谈,宋,茅," \
                    + r"庞,熊,纪,舒,屈,项,祝,董,梁,杜,阮,蓝,闽,席,季,麻,强,贾,路,娄,危,江,童,颜,郭,梅,盛,林,刁,锺,徐,丘,骆,高,夏,蔡,田,樊,胡,凌,霍,虞,万,支," \
                    + r"柯,昝,管,卢,莫,经,房,裘,缪,干,解,应,宗,丁,宣,贲,邓,郁,单,杭,洪,包,诸,左,石,崔,吉,钮,龚,程,嵇,邢,滑,裴,陆,荣,翁,荀,羊,於,惠,甄,麹,家," \
                    + r"封,芮,羿,储,靳,汲,邴,糜,松,井,段,富,巫,乌,焦,巴,弓,牧,隗,山,谷,车,侯,宓,蓬,全,郗,班,仰,秋,仲,伊,宫,宁,仇,栾,暴,甘,斜,厉,戎,祖,武,符," \
                    + r"刘,景,詹,束,龙,叶,幸,司,韶,郜,黎,蓟,薄,印,宿,白,怀,蒲,邰,从,鄂,索,咸,籍,赖,卓,蔺,屠,蒙,池,乔,阴,郁,胥,能,苍,双,闻,莘,党,翟,谭,贡,劳," \
                    + r"逄,姬,申,扶,堵,冉,宰,郦,雍,郤,璩,桑,桂,濮,牛,寿,通,边,扈,燕,冀,郏,浦,尚,农,温,别,庄,晏,柴,瞿,阎,充,慕,连,茹,习,宦,艾,鱼,容,向,古,易," \
                    + r"慎,戈,廖,庾,终,暨,居,衡,步,都,耿,满,弘,匡,国,文,寇,广,禄,阙,东,欧,殳,沃,利,蔚,越,夔,隆,师,巩,厍,聂,晁,勾,敖,融,冷,訾,辛,阚,那,简,饶," \
                    + r"空,曾,毋,沙,乜,养,鞠,须,丰,巢,关,蒯,相,查,后,荆,红,游,竺,权,逑,盖,益,桓,公,万俟,司马,上官,欧阳,夏侯,诸葛,闻人,东方,赫连,皇甫,尉迟," \
                    + r"公羊,澹台,公冶,宗政,濮阳,淳于,单于,太叔,申屠,公孙,仲孙,轩辕,令狐,锺离,宇文,长孙,慕容,鲜于,闾丘,司徒,司空,丌官,司寇,仉,督,子车," \
                    + r"颛孙,端木,巫马,公西,漆雕,乐正,壤驷,公良,拓拔,夹谷,宰父,谷梁,晋,楚,阎,法,汝,鄢,涂,钦,段干,百里,东郭,南门,呼延,归,海,羊舌,微生,岳," \
                    + r"帅,缑,亢,况,后,有,琴,梁丘,左丘,东门,西门,商,牟,佘,佴,伯,赏,南宫,墨,哈,谯,笪,年,爱,阳,佟,第五,言,福,邱,钟]"
        first_name = r' {0,3}[\u4e00-\u9fa5]( {0,3}[\u4e00-\u9fa5]){0,3}'
        self.name_pattern = re.compile(last_name + first_name)
        self.phone_pattern = re.compile(r'1 {0,4}(3 {0,4}\d|4 {0,4}[5-9]|5 {0,4}[0-35-9]|6 {0,4}[2567]|7 {0,4}[0-8]|8 {0,4}\d|9 {0,4}[0-35-9]) {0,4}(\d {0,4}){8}')
        self.email_pattern = re.compile(r'([a-zA-Z0-9_-] {0,4})+@([a-zA-Z0-9_-] {0,4})+(\. {0,4}([a-zA-Z0-9_-] {0,4})+)+')
        self.gender_pattern = re.compile(r'(性 {0,8}别.*?)?\s*?(男|女)')
        self.age_patterns = [
            re.compile(r"(\d{1,2})岁|年龄.{0,10}?(\d{1,2})"),
            re.compile(r"生.{0,12}(([12]\d{3})[年|.]?(([01]?\d)[月|.]?)?(([0-3]?\d)[日|.]?)?)"),
        ]
        self.works_key_pattern = re.compile("工作|experience|work",re.M|re.I)
        self.job_time_patterns = re.compile('([1-2]\d{3}(\D?[01]?\d){0,2})\D?([1-2]\d{3}(\D?[01]?\d){0,2}|至今)')
        self.edu_index =  ["博士","硕士","研究生","学士","本科","大专","专科","中专","高中","初中","小学"]
        self.edu_patterns = list(re.compile(i) for i in self.edu_index)
        self.school_pattern = re.compile(r"([a-zA-Z0-9 \u4e00-\u9fa5]{1,18}(学院|大学|中学|小学|学校|Unverisity|College))")

    def _is_url(self, path: str):
        return path.startswith('http://') or path.startswith('https://')

    def __init_schools_data(
        self,
        paths: List[str],
    ):
        schools = {}
        headers = {
            "User-Agent": "Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.103 Safari/537.36",
        }
        for path in paths:
            stream = None
            if self._is_url(path):
                res = requests.get(path,headers=headers)
                
                if res.status_code==200:
                    stream = BytesIO(res.content)
            else:
                with open(path, 'rb') as f:
                    stream = BytesIO(f.read())
            df = pd.read_excel(stream)
            for row in df.iterrows():
                if isinstance(row[1][1],float) and math.isnan(row[1][1]):
                    continue
                if row[1][1]=='学校名称':
                    continue
                # [学校] = 学历(本科、专科)
                if len(row[1])>5:
                    schools[row[1][1]] = row[1][5]
                else:
                    schools[row[1][1]] = "成人学校"
        self.schools = schools
        if len(schools)==0:
            raise ValueError("学校数据为空")

    def __init_split_data(
        self
    ):
        self.splits = {'\\', '_', '"', '%', '{', '《', ')', '$', '(', '\n', '~', '*', ':', '!', ';', '”', '’', '\t', '?', '-', ';', '》', '】', '`', '、', '+', '“', '[', '—', '·', ')', '=', '‘', '}', '?', ',', '&', '@', '#', ']', '——', ' ', '.', '【', "'", '>', ',', '/', ':', '。', '...', '^', '(', '<', '|', '……', '!'}

    def to_date(self, datestr:str):
        if re.match("^\d{4}$",datestr):
            return date(int(datestr),1,1)
        match = re.match("^(\d{4})\D(\d{1,2})",datestr)
        if match is not None:
            try:
                y = int(match.group(1))
                m = min(max(int(match.group(2)),1),12)
                return date(y,m,1)
            except ValueError:
                print(datestr)
        if datestr=="至今":
            return self.today
        return None

    def split_to_blocks(
        self,
        text: str,
        max_block_len: int = 510,
        overlap: bool = True,
        max_overlap_len: int = 20,
    ):
        block = {
            "start": -1,
            "end": -1,
            "text": "",
        }
        blocks = []
        overlap_end = queue.Queue()
        for i in range(len(text)):
            if text[i] in self.splits:
                if block["start"]==-1:
                    continue
                if block["end"]!=-1 and i-block['start']>=max_block_len:
                    block["text"] = text[block["start"]:block["end"]]
                    blocks.append(block)
                    block = {
                        "start": overlap_end.queue[0]+1 if overlap else block['end']+1,
                        "end": -1,
                        "text": "",
                    }
                block["end"] = i
                while overlap_end.qsize()>0 and overlap_end.queue[0]+max_overlap_len<=i:
                    overlap_end.get()
                overlap_end.put(i)
            else:
                if block["start"]==-1:
                    block["start"] = i
        # last block
        if block["start"]!=-1:
            block["end"] = len(text)
            block["text"] = text[block["start"]:block["end"]]
            blocks.append(block)
        return blocks
    
    def get_expand_span(
        self, 
        text: str, 
        start: int, 
        end: int,
        max_expand_length=10,
    ):
        expand_l,expand_r = start,end
        for l in range(max(start-max_expand_length,0), start):
            if text[l] in self.splits:
                expand_l = l+1
                break
        for r in range(min(end+max_expand_length,len(text)-1), end, -1):
            if text[r] in self.splits:
                expand_r = r
                break
        return text[expand_l:expand_r], expand_l, expand_r
    
    def remove_blanks(
        self,
        text: str,
        blank_pattern: re.Pattern,
    ):
        index_mapper = {}
        new_text = []
        for i in range(len(text)):
            if blank_pattern.match(text[i]) is not None:
                continue
            index_mapper[len(new_text)] = i
            new_text.append(text[i])
        return ''.join(new_text), index_mapper
    
    def process(self, text)->Dict[str, Any]:
        return_obj = {
            "name": [],
            "age": [],
            "gender": [],
            "phone": [],
            "email": [],
            "schools": [],
            "work_time": 0,
            "edus": [],
            "jobs": [],
            "titles": []
        }
        # 获取名字,先过滤所有空白字符,防止名字中间有空格
        remove_blanks_text, index_mapper = self.remove_blanks(text, re.compile(r' '))
        start_time = time.perf_counter()
        backup_name = []
        for block in self.split_to_blocks(remove_blanks_text):
            block_text,block_l = block['text'],block['start']
            entities = self.pipelines['name'](block_text)
            for entity in entities:
                if entity['entity']=='NAME':
                    if self.name_pattern.match(entity['word']) is not None:
                        obj = {
                            'start': index_mapper[block_l+entity['start']],
                            'end': index_mapper[block_l+entity['end']-1]+1,
                            'entity': 'NAME',
                            'text': entity['word']
                        }
                        repeat = False
                        for o in return_obj['name']:
                            if obj['start']==o['start'] and obj['end']==o['end']:
                                repeat = True
                                break
                        if not repeat:
                            obj['origin'] = text[obj['start']:obj['end']]
                            return_obj['name'].append(obj)
                    else:
                        obj = {
                            'start': index_mapper[block_l+entity['start']],
                            'end': index_mapper[block_l+entity['end']-1]+1,
                            'entity': 'NAME',
                            'text': entity['word']
                        }
                        repeat = False
                        for o in return_obj['name']:
                            if obj['start']==o['start'] and obj['end']==o['end']:
                                repeat = True
                                break
                        if not repeat:
                            obj['origin'] = text[obj['start']:obj['end']]
                            backup_name.append(obj)
        if len(return_obj['name'])==0:
            return_obj['name'] = backup_name
        end_time = time.perf_counter()
        self.logger.info(f"process name time: {end_time-start_time}")
        # 获取年龄
        start_time = time.perf_counter()
        for age_match in self.age_patterns[0].finditer(remove_blanks_text):
            age = None
            s,e = -1,-1
            if age_match.group(1) is not None:
                age = age_match.group(1)
                s,e = age_match.span(1)
            elif age_match.group(2) is not None:
                age = age_match.group(2)
                s,e = age_match.span(2)
            if age is not None:    
                return_obj['age'].append({
                    'start': index_mapper[s],
                    'end': index_mapper[e-1]+1,
                    'text': str(age),
                    'entity': 'AGE',
                    'origin': text[index_mapper[s]:index_mapper[e-1]+1]
                })
        for age_match in self.age_patterns[1].finditer(remove_blanks_text):
            age = None
            s,e = -1,-1
            year = age_match.group(2)
            if year is not None:
                year = int(year)
                month = age_match.group(4)
                if month is not None:
                    month = int(month)
                else:
                    month = 1
                day = age_match.group(6)
                if day is not None:
                    day = int(day)
                else:
                    day = 1
                age = date.today().year - year
                if date.today().month<month or (date.today().month==month and date.today().day<day):
                    age -= 1
            if age is not None:
                s,e = age_match.span(1)
                return_obj['age'].append({
                    'start': index_mapper[s],
                    'end': index_mapper[e-1]+1,
                    'text': str(age),
                    'entity': 'AGE',
                    'origin': text[index_mapper[s]:index_mapper[e-1]+1]
                })
        end_time = time.perf_counter()
        self.logger.info(f"process age time: {end_time-start_time}")
        start_time = time.perf_counter()
        # 获取学校
        for school_match in self.school_pattern.finditer(remove_blanks_text):
            start,end = school_match.span()
            expand_text, start, end = self.get_expand_span(remove_blanks_text, start, end)
            entities = self.pipelines['common'](expand_text)
            for entity in entities:
                if entity['entity']=="ORG" and self.school_pattern.search(entity['word']) is not None:
                    obj = {
                        'start': index_mapper[start+entity['start']],
                        'end': index_mapper[start+entity['end']-1]+1,
                        'entity': 'SCHOOL'
                    }
                    for school in self.schools:
                        if school in entity['word']:
                            obj['text'] = school
                            obj["level"] = self.schools[school]
                            break
                    repeat = False
                    for o in return_obj['schools']:
                        if obj['start']==o['start'] and obj['end']==o['end']:
                            repeat = True
                            break
                    if not repeat:
                        obj['origin'] = text[obj['start']:obj['end']]
                        if "text" not in obj:
                            obj['text'] = obj['origin'].split("\n")[-1]
                        return_obj['schools'].append(obj)
        # 正则找学校
        for school_match in re.finditer(r"|".join(self.schools.keys()), remove_blanks_text):
            start,end = school_match.span()
            obj = {
                'start': index_mapper[start],
                'end': index_mapper[end-1]+1,
                'entity': 'SCHOOL',
                'text': school_match.group().split('\n')[-1],
            }
            repeat = False
            for o in return_obj['schools']:
                if obj['start']==o['start'] and obj['end']==o['end']:
                    repeat = True
                    break
            if not repeat:
                obj['origin'] = text[obj['start']:obj['end']]
                obj['level'] = self.schools[obj['text']]
                return_obj['schools'].append(obj)
        return_obj['schools'] = sorted(return_obj['schools'], key=lambda x: x['start'])
        end_time = time.perf_counter()
        self.logger.info(f"process school time: {end_time-start_time}")
        start_time = time.perf_counter()
        # 获取学历
        for i,pattern in enumerate(self.edu_patterns):
            for edu_match in pattern.finditer(remove_blanks_text):
                start,end = edu_match.span()
                expand_text, start, end = self.get_expand_span(remove_blanks_text, start, end)
                entities = self.pipelines['common'](expand_text)
                for entity in entities:
                    if entity['entity']=='EDU' and pattern.search(entity['word']) is not None:
                        obj = {
                            'start': index_mapper[start+entity['start']],
                            'end': index_mapper[start+entity['end']-1]+1,
                            'text': self.edu_index[i],
                            'entity': 'EDU',
                        }
                        repeat = False
                        for o in return_obj['edus']:
                            if obj['start']==o['start'] and obj['end']==o['end']:
                                repeat = True
                                break
                        if not repeat:
                            obj['origin'] = text[obj['start']:obj['end']]
                            return_obj['edus'].append(obj)
        end_time = time.perf_counter()
        self.logger.info(f"process edu time: {end_time-start_time}")
        start_time = time.perf_counter()
        # 如果有工作经历
        if self.works_key_pattern.search(remove_blanks_text) is not None:
            for job_time_match in self.job_time_patterns.finditer(remove_blanks_text):
                origin_start,origin_end = job_time_match.span()
                # convert_to_date
                fr = self.to_date(job_time_match.group(1))
                if fr is None:
                    continue
                fs,fe = job_time_match.span(1)
                to = self.to_date(job_time_match.group(3))
                if to is None:
                    continue
                ts,te = job_time_match.span(3)
                expand_text, start, end = self.get_expand_span(remove_blanks_text, origin_start, origin_end, max_expand_length=50)
                entities = self.pipelines['common'](expand_text)
                objs = []
                for entity in entities:
                    if entity['entity']=="ORG":
                        obj = {
                            'start': index_mapper[start+entity['start']],
                            'end': index_mapper[start+entity['end']-1]+1,
                            'entity': 'COMPANY',
                            'text': entity['word'],
                            'dis': min(
                                abs(origin_start-start-entity['end']+1),
                                abs(origin_end-start-entity['start'])
                            ),
                        }
                        obj['origin'] = text[obj['start']:obj['end']]
                        objs.append(obj)
                objs.sort(key=lambda x:x['dis'])
                if len(objs)>0 and self.school_pattern.search(objs[0]['text']) is None:
                    del objs[0]['dis']
                    from_date = {
                        'start': index_mapper[fs],
                        'end': index_mapper[fe-1]+1,
                        'text': fr.isoformat(),
                        'entity': 'DATE',
                        'origin': text[index_mapper[fs]:index_mapper[fe-1]+1]
                    }
                    to_date = {
                        'start': index_mapper[ts],
                        'end': index_mapper[te-1]+1,
                        'text': to.isoformat(),
                        'entity': 'DATE',
                        'origin': text[index_mapper[ts]:index_mapper[te-1]+1]
                    }
                    jobs = [objs[0],from_date,to_date]
                    return_obj['jobs'].append(jobs)
            return_obj["jobs"].sort(key=lambda x:date.fromisoformat(x[1]['text']))
            # 计算工作时间
            last_end = None
            work_month = 0
            for i in range(0,len(return_obj["jobs"])):
                start = date.fromisoformat(return_obj["jobs"][i][1]['text'])
                end = date.fromisoformat(return_obj["jobs"][i][2]['text'])
                if last_end is not None and start<last_end:
                    start = last_end
                diff_y = end.year-start.year
                diff_m = end.month-start.month
                work_month += diff_y * 12 + diff_m
                last_end = end
            return_obj['work_time'] = max(math.ceil(work_month/12),0)
        end_time = time.perf_counter()
        self.logger.info(f"process work time: {end_time-start_time}")
        start_time = time.perf_counter()
        # 获取手机号码
        for phone_match in self.phone_pattern.finditer(text):
            start,end = phone_match.span()
            return_obj['phone'].append({
                'start': start,
                'end': end,
                'entity': 'PHONE',
                'origin': text[start:end],
                'text': re.sub('\s','',text[start:end])
            })
        end_time = time.perf_counter()
        self.logger.info(f"process phone time: {end_time-start_time}")
        start_time = time.perf_counter()
        for email_match in self.email_pattern.finditer(text):
            start,end = email_match.span()
            return_obj['email'].append({
                'start': start,
                'end': end,
                'entity': 'EMAIL',
                'origin': text[start:end],
                'text': re.sub('\s','',text[start:end])
            })
        end_time = time.perf_counter()
        self.logger.info(f"process email time: {end_time-start_time}")
        start_time = time.perf_counter()
        for gender_match in self.gender_pattern.finditer(text):
            start,end = gender_match.span(2)
            return_obj['gender'].append({
                'start': start,
                'end': end,
                'entity': 'GENDER',
                'origin': text[start:end],
                'text': text[start:end]
            })
        end_time = time.perf_counter()
        self.logger.info(f"process gender time: {end_time-start_time}")
        start_time = time.perf_counter()
        for block in self.split_to_blocks(remove_blanks_text):
            entities = self.pipelines["common"](block["text"])
            for entity in entities:
                if entity['entity']=='TITLE':
                    obj = {
                        'start': index_mapper[block['start']+entity['start']],
                        'end': index_mapper[block['start']+entity['end']-1]+1,
                        'text': entity['word'],
                        'entity': 'TITLE',
                    }
                    obj['origin'] = text[obj['start']:obj['end']]
                    repeat = False
                    for o in return_obj['titles']:
                        if obj['start']==o['start'] and obj['end']==o['end']:
                            repeat = True
                            break
                    if not repeat:
                        return_obj['titles'].append(obj)
        end_time = time.perf_counter()
        self.logger.info(f"process title time: {end_time-start_time}")
        return return_obj
    
    def __call__(self, *args: Any, **kwds: Any) -> Any:
        return self.process(*args, **kwds)

class PositionPredictor():

    def __init__(self, pipeline: Pipeline) -> None:
        self.pipeline = pipeline
        self.__init_split_data()
        self.logger = logging.getLogger(__name__)

    def __split_blocks(self, text: str) -> List[str]:
        start,end = 0,0
        blocks = []
        while end<len(text):
            if text[end] in self.splits:
                if end>start:
                    blocks.append(text[start:end])
                start = end+1
            end += 1
        if end>start:
            blocks.append(text[start:end])
        return blocks
    
    def __init_split_data(
        self
    ):
        self.splits = {'\\', '_', '"', '%', '{', '《', ')', '$', '(', '\n', '~', '*', ':', '!', ';', '”', '’', '\t', '?', '-', ';', '》', '】', '`', '、', '+', '“', '[', '—', '·', ')', '=', '‘', '}', '?', ',', '&', '@', '#', ']', '——', ' ', '.', '【', "'", '>', ',', '/', ':', '。', '...', '^', '(', '<', '|', '……', '!'}

    def predict(self, 
                positions: List[Dict[str,Union[str,List[str]]]], 
                resume: str
        ) -> List[Dict[str, Union[str, float]]]:
            ans = []
            resume_blocks = self.__split_blocks(resume)
            resume_encoding = []
            for block_resume in resume_blocks:
                resume_encoding.append(torch.tensor(self.pipeline(block_resume)[0]))
            resume_encoding = torch.stack(resume_encoding,dim=0)
            for position in positions:
                requireds = position['required']
                score = 0.0
                block_encodings = []
                for required in requireds:
                    blocks = self.__split_blocks(required)
                    for block in blocks:
                        block_encodings.append(torch.tensor(self.pipeline(block)[0]))
                block_encodings = torch.stack(block_encodings,dim=0)
                cos_sims = F.cosine_similarity(resume_encoding.unsqueeze(1), block_encodings.unsqueeze(0),dim=-1)
                score = cos_sims.max().item()
                self.logger.info(f"position: {position['name']}, score: {score}")
                ans.append({
                    'position': position['name'],
                    'score': score
                })
            ans.sort(key=lambda x:x['score'], reverse=True)
            return ans
    
    def __call__(self, *args: Any, **kwds: Any) -> Any:
        return self.predict(*args, **kwds)