Spaces:
Runtime error
Runtime error
File size: 26,266 Bytes
2447637 1e4d53d f0b9b57 be33f2e 1e4d53d f0b9b57 1e4d53d bcb2102 1e4d53d fddeeda 1e4d53d fddeeda 1e4d53d fddeeda 1e4d53d bcb2102 1e4d53d bcb2102 1e4d53d bcb2102 1e4d53d f0b9b57 1e4d53d f0b9b57 1e4d53d f0b9b57 bcb2102 f0b9b57 1e4d53d bcb2102 f0b9b57 1e4d53d f0b9b57 1e4d53d fddeeda 1e4d53d f0b9b57 1e4d53d bcb2102 1e4d53d bcb2102 1e4d53d bcb2102 f0b9b57 1e4d53d f0b9b57 1e4d53d f0b9b57 1e4d53d f0b9b57 1e4d53d f0b9b57 1e4d53d bcb2102 f0b9b57 1e4d53d f0b9b57 1e4d53d f0b9b57 1e4d53d be33f2e 1e4d53d f0b9b57 1e4d53d f0b9b57 1e4d53d 2447637 be33f2e 2447637 be33f2e 2447637 be33f2e 2447637 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 |
from typing import Any, Dict,List,Union
from transformers import Pipeline
import requests
import re
from io import BytesIO
import pandas as pd
import math
import queue
from datetime import date
import time
import logging
import torch
import torch.nn.functional as F
class Predictor():
def __init__(
self,
pipelines: Dict[str, Pipeline] = {},
paths: List[str] = [],
today: date = date.today()
) -> None:
if "name" not in pipelines:
raise ValueError("'name' pipeline is None")
if "common" not in pipelines:
raise ValueError("'common' pipeline is None")
self.pipelines = pipelines
self.today = today
self.logger = logging.getLogger(__name__)
self.__init_split_data()
self.__init_schools_data(paths)
self.__init_patterns()
def __init_patterns(
self
):
last_name = r"[赵,钱,孙,李,周,吴,郑,王,冯,陈,楮,卫,蒋,沈,韩,杨,朱,秦,尤,许,何,吕,施,张,孔,曹,严,华,金,魏,陶,姜,戚,谢,邹,喻,"\
+r"柏,水,窦,章,云,苏,潘,葛,奚,范,彭,郎,鲁,韦,昌,马,苗,凤,花,方,俞,任,袁,柳,酆,鲍,史,唐,费,廉,岑,薛,雷,贺,倪,汤,滕,殷,罗," \
+ r"毕,郝,邬,安,常,乐,于,时,傅,皮,卞,齐,康,伍,余,元,卜,顾,孟,平,黄,和,穆,萧,尹,姚,邵,湛,汪,祁,毛,禹,狄,米,贝,明,臧,计,伏,成,戴,谈,宋,茅," \
+ r"庞,熊,纪,舒,屈,项,祝,董,梁,杜,阮,蓝,闽,席,季,麻,强,贾,路,娄,危,江,童,颜,郭,梅,盛,林,刁,锺,徐,丘,骆,高,夏,蔡,田,樊,胡,凌,霍,虞,万,支," \
+ r"柯,昝,管,卢,莫,经,房,裘,缪,干,解,应,宗,丁,宣,贲,邓,郁,单,杭,洪,包,诸,左,石,崔,吉,钮,龚,程,嵇,邢,滑,裴,陆,荣,翁,荀,羊,於,惠,甄,麹,家," \
+ r"封,芮,羿,储,靳,汲,邴,糜,松,井,段,富,巫,乌,焦,巴,弓,牧,隗,山,谷,车,侯,宓,蓬,全,郗,班,仰,秋,仲,伊,宫,宁,仇,栾,暴,甘,斜,厉,戎,祖,武,符," \
+ r"刘,景,詹,束,龙,叶,幸,司,韶,郜,黎,蓟,薄,印,宿,白,怀,蒲,邰,从,鄂,索,咸,籍,赖,卓,蔺,屠,蒙,池,乔,阴,郁,胥,能,苍,双,闻,莘,党,翟,谭,贡,劳," \
+ r"逄,姬,申,扶,堵,冉,宰,郦,雍,郤,璩,桑,桂,濮,牛,寿,通,边,扈,燕,冀,郏,浦,尚,农,温,别,庄,晏,柴,瞿,阎,充,慕,连,茹,习,宦,艾,鱼,容,向,古,易," \
+ r"慎,戈,廖,庾,终,暨,居,衡,步,都,耿,满,弘,匡,国,文,寇,广,禄,阙,东,欧,殳,沃,利,蔚,越,夔,隆,师,巩,厍,聂,晁,勾,敖,融,冷,訾,辛,阚,那,简,饶," \
+ r"空,曾,毋,沙,乜,养,鞠,须,丰,巢,关,蒯,相,查,后,荆,红,游,竺,权,逑,盖,益,桓,公,万俟,司马,上官,欧阳,夏侯,诸葛,闻人,东方,赫连,皇甫,尉迟," \
+ r"公羊,澹台,公冶,宗政,濮阳,淳于,单于,太叔,申屠,公孙,仲孙,轩辕,令狐,锺离,宇文,长孙,慕容,鲜于,闾丘,司徒,司空,丌官,司寇,仉,督,子车," \
+ r"颛孙,端木,巫马,公西,漆雕,乐正,壤驷,公良,拓拔,夹谷,宰父,谷梁,晋,楚,阎,法,汝,鄢,涂,钦,段干,百里,东郭,南门,呼延,归,海,羊舌,微生,岳," \
+ r"帅,缑,亢,况,后,有,琴,梁丘,左丘,东门,西门,商,牟,佘,佴,伯,赏,南宫,墨,哈,谯,笪,年,爱,阳,佟,第五,言,福,邱,钟]"
first_name = r' {0,3}[\u4e00-\u9fa5]( {0,3}[\u4e00-\u9fa5]){0,3}'
self.name_pattern = re.compile(last_name + first_name)
self.phone_pattern = re.compile(r'1 {0,4}(3 {0,4}\d|4 {0,4}[5-9]|5 {0,4}[0-35-9]|6 {0,4}[2567]|7 {0,4}[0-8]|8 {0,4}\d|9 {0,4}[0-35-9]) {0,4}(\d {0,4}){8}')
self.email_pattern = re.compile(r'([a-zA-Z0-9_-] {0,4})+@([a-zA-Z0-9_-] {0,4})+(\. {0,4}([a-zA-Z0-9_-] {0,4})+)+')
self.gender_pattern = re.compile(r'(性 {0,8}别.*?)?\s*?(男|女)')
self.age_patterns = [
re.compile(r"(\d{1,2})岁|年龄.{0,10}?(\d{1,2})"),
re.compile(r"生.{0,12}(([12]\d{3})[年|.]?(([01]?\d)[月|.]?)?(([0-3]?\d)[日|.]?)?)"),
]
self.works_key_pattern = re.compile("工作|experience|work",re.M|re.I)
self.job_time_patterns = re.compile('([1-2]\d{3}(\D?[01]?\d){0,2})\D?([1-2]\d{3}(\D?[01]?\d){0,2}|至今)')
self.edu_index = ["博士","硕士","研究生","学士","本科","大专","专科","中专","高中","初中","小学"]
self.edu_patterns = list(re.compile(i) for i in self.edu_index)
self.school_pattern = re.compile(r"([a-zA-Z0-9 \u4e00-\u9fa5]{1,18}(学院|大学|中学|小学|学校|Unverisity|College))")
def _is_url(self, path: str):
return path.startswith('http://') or path.startswith('https://')
def __init_schools_data(
self,
paths: List[str],
):
schools = {}
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.103 Safari/537.36",
}
for path in paths:
stream = None
if self._is_url(path):
res = requests.get(path,headers=headers)
if res.status_code==200:
stream = BytesIO(res.content)
else:
with open(path, 'rb') as f:
stream = BytesIO(f.read())
df = pd.read_excel(stream)
for row in df.iterrows():
if isinstance(row[1][1],float) and math.isnan(row[1][1]):
continue
if row[1][1]=='学校名称':
continue
# [学校] = 学历(本科、专科)
if len(row[1])>5:
schools[row[1][1]] = row[1][5]
else:
schools[row[1][1]] = "成人学校"
self.schools = schools
if len(schools)==0:
raise ValueError("学校数据为空")
def __init_split_data(
self
):
self.splits = {'\\', '_', '"', '%', '{', '《', ')', '$', '(', '\n', '~', '*', ':', '!', ';', '”', '’', '\t', '?', '-', ';', '》', '】', '`', '、', '+', '“', '[', '—', '·', ')', '=', '‘', '}', '?', ',', '&', '@', '#', ']', '——', ' ', '.', '【', "'", '>', ',', '/', ':', '。', '...', '^', '(', '<', '|', '……', '!'}
def to_date(self, datestr:str):
if re.match("^\d{4}$",datestr):
return date(int(datestr),1,1)
match = re.match("^(\d{4})\D(\d{1,2})",datestr)
if match is not None:
try:
y = int(match.group(1))
m = min(max(int(match.group(2)),1),12)
return date(y,m,1)
except ValueError:
print(datestr)
if datestr=="至今":
return self.today
return None
def split_to_blocks(
self,
text: str,
max_block_len: int = 510,
overlap: bool = True,
max_overlap_len: int = 20,
):
block = {
"start": -1,
"end": -1,
"text": "",
}
blocks = []
overlap_end = queue.Queue()
for i in range(len(text)):
if text[i] in self.splits:
if block["start"]==-1:
continue
if block["end"]!=-1 and i-block['start']>=max_block_len:
block["text"] = text[block["start"]:block["end"]]
blocks.append(block)
block = {
"start": overlap_end.queue[0]+1 if overlap else block['end']+1,
"end": -1,
"text": "",
}
block["end"] = i
while overlap_end.qsize()>0 and overlap_end.queue[0]+max_overlap_len<=i:
overlap_end.get()
overlap_end.put(i)
else:
if block["start"]==-1:
block["start"] = i
# last block
if block["start"]!=-1:
block["end"] = len(text)
block["text"] = text[block["start"]:block["end"]]
blocks.append(block)
return blocks
def get_expand_span(
self,
text: str,
start: int,
end: int,
max_expand_length=10,
):
expand_l,expand_r = start,end
for l in range(max(start-max_expand_length,0), start):
if text[l] in self.splits:
expand_l = l+1
break
for r in range(min(end+max_expand_length,len(text)-1), end, -1):
if text[r] in self.splits:
expand_r = r
break
return text[expand_l:expand_r], expand_l, expand_r
def remove_blanks(
self,
text: str,
blank_pattern: re.Pattern,
):
index_mapper = {}
new_text = []
for i in range(len(text)):
if blank_pattern.match(text[i]) is not None:
continue
index_mapper[len(new_text)] = i
new_text.append(text[i])
return ''.join(new_text), index_mapper
def process(self, text)->Dict[str, Any]:
return_obj = {
"name": [],
"age": [],
"gender": [],
"phone": [],
"email": [],
"schools": [],
"work_time": 0,
"edus": [],
"jobs": [],
"titles": []
}
# 获取名字,先过滤所有空白字符,防止名字中间有空格
remove_blanks_text, index_mapper = self.remove_blanks(text, re.compile(r' '))
start_time = time.perf_counter()
backup_name = []
for block in self.split_to_blocks(remove_blanks_text):
block_text,block_l = block['text'],block['start']
entities = self.pipelines['name'](block_text)
for entity in entities:
if entity['entity']=='NAME':
if self.name_pattern.match(entity['word']) is not None:
obj = {
'start': index_mapper[block_l+entity['start']],
'end': index_mapper[block_l+entity['end']-1]+1,
'entity': 'NAME',
'text': entity['word']
}
repeat = False
for o in return_obj['name']:
if obj['start']==o['start'] and obj['end']==o['end']:
repeat = True
break
if not repeat:
obj['origin'] = text[obj['start']:obj['end']]
return_obj['name'].append(obj)
else:
obj = {
'start': index_mapper[block_l+entity['start']],
'end': index_mapper[block_l+entity['end']-1]+1,
'entity': 'NAME',
'text': entity['word']
}
repeat = False
for o in return_obj['name']:
if obj['start']==o['start'] and obj['end']==o['end']:
repeat = True
break
if not repeat:
obj['origin'] = text[obj['start']:obj['end']]
backup_name.append(obj)
if len(return_obj['name'])==0:
return_obj['name'] = backup_name
end_time = time.perf_counter()
self.logger.info(f"process name time: {end_time-start_time}")
# 获取年龄
start_time = time.perf_counter()
for age_match in self.age_patterns[0].finditer(remove_blanks_text):
age = None
s,e = -1,-1
if age_match.group(1) is not None:
age = age_match.group(1)
s,e = age_match.span(1)
elif age_match.group(2) is not None:
age = age_match.group(2)
s,e = age_match.span(2)
if age is not None:
return_obj['age'].append({
'start': index_mapper[s],
'end': index_mapper[e-1]+1,
'text': str(age),
'entity': 'AGE',
'origin': text[index_mapper[s]:index_mapper[e-1]+1]
})
for age_match in self.age_patterns[1].finditer(remove_blanks_text):
age = None
s,e = -1,-1
year = age_match.group(2)
if year is not None:
year = int(year)
month = age_match.group(4)
if month is not None:
month = int(month)
else:
month = 1
day = age_match.group(6)
if day is not None:
day = int(day)
else:
day = 1
age = date.today().year - year
if date.today().month<month or (date.today().month==month and date.today().day<day):
age -= 1
if age is not None:
s,e = age_match.span(1)
return_obj['age'].append({
'start': index_mapper[s],
'end': index_mapper[e-1]+1,
'text': str(age),
'entity': 'AGE',
'origin': text[index_mapper[s]:index_mapper[e-1]+1]
})
end_time = time.perf_counter()
self.logger.info(f"process age time: {end_time-start_time}")
start_time = time.perf_counter()
# 获取学校
for school_match in self.school_pattern.finditer(remove_blanks_text):
start,end = school_match.span()
expand_text, start, end = self.get_expand_span(remove_blanks_text, start, end)
entities = self.pipelines['common'](expand_text)
for entity in entities:
if entity['entity']=="ORG" and self.school_pattern.search(entity['word']) is not None:
obj = {
'start': index_mapper[start+entity['start']],
'end': index_mapper[start+entity['end']-1]+1,
'entity': 'SCHOOL'
}
for school in self.schools:
if school in entity['word']:
obj['text'] = school
obj["level"] = self.schools[school]
break
repeat = False
for o in return_obj['schools']:
if obj['start']==o['start'] and obj['end']==o['end']:
repeat = True
break
if not repeat:
obj['origin'] = text[obj['start']:obj['end']]
if "text" not in obj:
obj['text'] = obj['origin'].split("\n")[-1]
return_obj['schools'].append(obj)
# 正则找学校
for school_match in re.finditer(r"|".join(self.schools.keys()), remove_blanks_text):
start,end = school_match.span()
obj = {
'start': index_mapper[start],
'end': index_mapper[end-1]+1,
'entity': 'SCHOOL',
'text': school_match.group().split('\n')[-1],
}
repeat = False
for o in return_obj['schools']:
if obj['start']==o['start'] and obj['end']==o['end']:
repeat = True
break
if not repeat:
obj['origin'] = text[obj['start']:obj['end']]
obj['level'] = self.schools[obj['text']]
return_obj['schools'].append(obj)
return_obj['schools'] = sorted(return_obj['schools'], key=lambda x: x['start'])
end_time = time.perf_counter()
self.logger.info(f"process school time: {end_time-start_time}")
start_time = time.perf_counter()
# 获取学历
for i,pattern in enumerate(self.edu_patterns):
for edu_match in pattern.finditer(remove_blanks_text):
start,end = edu_match.span()
expand_text, start, end = self.get_expand_span(remove_blanks_text, start, end)
entities = self.pipelines['common'](expand_text)
for entity in entities:
if entity['entity']=='EDU' and pattern.search(entity['word']) is not None:
obj = {
'start': index_mapper[start+entity['start']],
'end': index_mapper[start+entity['end']-1]+1,
'text': self.edu_index[i],
'entity': 'EDU',
}
repeat = False
for o in return_obj['edus']:
if obj['start']==o['start'] and obj['end']==o['end']:
repeat = True
break
if not repeat:
obj['origin'] = text[obj['start']:obj['end']]
return_obj['edus'].append(obj)
end_time = time.perf_counter()
self.logger.info(f"process edu time: {end_time-start_time}")
start_time = time.perf_counter()
# 如果有工作经历
if self.works_key_pattern.search(remove_blanks_text) is not None:
for job_time_match in self.job_time_patterns.finditer(remove_blanks_text):
origin_start,origin_end = job_time_match.span()
# convert_to_date
fr = self.to_date(job_time_match.group(1))
if fr is None:
continue
fs,fe = job_time_match.span(1)
to = self.to_date(job_time_match.group(3))
if to is None:
continue
ts,te = job_time_match.span(3)
expand_text, start, end = self.get_expand_span(remove_blanks_text, origin_start, origin_end, max_expand_length=50)
entities = self.pipelines['common'](expand_text)
objs = []
for entity in entities:
if entity['entity']=="ORG":
obj = {
'start': index_mapper[start+entity['start']],
'end': index_mapper[start+entity['end']-1]+1,
'entity': 'COMPANY',
'text': entity['word'],
'dis': min(
abs(origin_start-start-entity['end']+1),
abs(origin_end-start-entity['start'])
),
}
obj['origin'] = text[obj['start']:obj['end']]
objs.append(obj)
objs.sort(key=lambda x:x['dis'])
if len(objs)>0 and self.school_pattern.search(objs[0]['text']) is None:
del objs[0]['dis']
from_date = {
'start': index_mapper[fs],
'end': index_mapper[fe-1]+1,
'text': fr.isoformat(),
'entity': 'DATE',
'origin': text[index_mapper[fs]:index_mapper[fe-1]+1]
}
to_date = {
'start': index_mapper[ts],
'end': index_mapper[te-1]+1,
'text': to.isoformat(),
'entity': 'DATE',
'origin': text[index_mapper[ts]:index_mapper[te-1]+1]
}
jobs = [objs[0],from_date,to_date]
return_obj['jobs'].append(jobs)
return_obj["jobs"].sort(key=lambda x:date.fromisoformat(x[1]['text']))
# 计算工作时间
last_end = None
work_month = 0
for i in range(0,len(return_obj["jobs"])):
start = date.fromisoformat(return_obj["jobs"][i][1]['text'])
end = date.fromisoformat(return_obj["jobs"][i][2]['text'])
if last_end is not None and start<last_end:
start = last_end
diff_y = end.year-start.year
diff_m = end.month-start.month
work_month += diff_y * 12 + diff_m
last_end = end
return_obj['work_time'] = max(math.ceil(work_month/12),0)
end_time = time.perf_counter()
self.logger.info(f"process work time: {end_time-start_time}")
start_time = time.perf_counter()
# 获取手机号码
for phone_match in self.phone_pattern.finditer(text):
start,end = phone_match.span()
return_obj['phone'].append({
'start': start,
'end': end,
'entity': 'PHONE',
'origin': text[start:end],
'text': re.sub('\s','',text[start:end])
})
end_time = time.perf_counter()
self.logger.info(f"process phone time: {end_time-start_time}")
start_time = time.perf_counter()
for email_match in self.email_pattern.finditer(text):
start,end = email_match.span()
return_obj['email'].append({
'start': start,
'end': end,
'entity': 'EMAIL',
'origin': text[start:end],
'text': re.sub('\s','',text[start:end])
})
end_time = time.perf_counter()
self.logger.info(f"process email time: {end_time-start_time}")
start_time = time.perf_counter()
for gender_match in self.gender_pattern.finditer(text):
start,end = gender_match.span(2)
return_obj['gender'].append({
'start': start,
'end': end,
'entity': 'GENDER',
'origin': text[start:end],
'text': text[start:end]
})
end_time = time.perf_counter()
self.logger.info(f"process gender time: {end_time-start_time}")
start_time = time.perf_counter()
for block in self.split_to_blocks(remove_blanks_text):
entities = self.pipelines["common"](block["text"])
for entity in entities:
if entity['entity']=='TITLE':
obj = {
'start': index_mapper[block['start']+entity['start']],
'end': index_mapper[block['start']+entity['end']-1]+1,
'text': entity['word'],
'entity': 'TITLE',
}
obj['origin'] = text[obj['start']:obj['end']]
repeat = False
for o in return_obj['titles']:
if obj['start']==o['start'] and obj['end']==o['end']:
repeat = True
break
if not repeat:
return_obj['titles'].append(obj)
end_time = time.perf_counter()
self.logger.info(f"process title time: {end_time-start_time}")
return return_obj
def __call__(self, *args: Any, **kwds: Any) -> Any:
return self.process(*args, **kwds)
class PositionPredictor():
def __init__(self, pipeline: Pipeline) -> None:
self.pipeline = pipeline
self.__init_split_data()
self.logger = logging.getLogger(__name__)
def __split_blocks(self, text: str) -> List[str]:
start,end = 0,0
blocks = []
while end<len(text):
if text[end] in self.splits:
if end>start:
blocks.append(text[start:end])
start = end+1
end += 1
if end>start:
blocks.append(text[start:end])
return blocks
def __init_split_data(
self
):
self.splits = {'\\', '_', '"', '%', '{', '《', ')', '$', '(', '\n', '~', '*', ':', '!', ';', '”', '’', '\t', '?', '-', ';', '》', '】', '`', '、', '+', '“', '[', '—', '·', ')', '=', '‘', '}', '?', ',', '&', '@', '#', ']', '——', ' ', '.', '【', "'", '>', ',', '/', ':', '。', '...', '^', '(', '<', '|', '……', '!'}
def predict(self,
positions: List[Dict[str,Union[str,List[str]]]],
resume: str
) -> List[Dict[str, Union[str, float]]]:
ans = []
resume_blocks = self.__split_blocks(resume)
resume_encoding = []
for block_resume in resume_blocks:
resume_encoding.append(torch.tensor(self.pipeline(block_resume)[0]))
resume_encoding = torch.stack(resume_encoding,dim=0)
for position in positions:
requireds = position['required']
score = 0.0
block_encodings = []
for required in requireds:
blocks = self.__split_blocks(required)
for block in blocks:
block_encodings.append(torch.tensor(self.pipeline(block)[0]))
block_encodings = torch.stack(block_encodings,dim=0)
cos_sims = F.cosine_similarity(resume_encoding.unsqueeze(1), block_encodings.unsqueeze(0),dim=-1)
score = cos_sims.max().item()
self.logger.info(f"position: {position['name']}, score: {score}")
ans.append({
'position': position['name'],
'score': score
})
ans.sort(key=lambda x:x['score'], reverse=True)
return ans
def __call__(self, *args: Any, **kwds: Any) -> Any:
return self.predict(*args, **kwds)
|