Spaces:
Sleeping
Sleeping
Delete .ipynb_checkpoints
Browse files
.ipynb_checkpoints/Untitled-checkpoint.ipynb
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [],
|
3 |
-
"metadata": {},
|
4 |
-
"nbformat": 4,
|
5 |
-
"nbformat_minor": 5
|
6 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.ipynb_checkpoints/gradio_hearttack_app-checkpoint.py
DELETED
@@ -1,83 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import xgboost as xgb
|
3 |
-
import joblib
|
4 |
-
import numpy as np
|
5 |
-
from sklearn.preprocessing import StandardScaler
|
6 |
-
import pandas as pd
|
7 |
-
import shap
|
8 |
-
import matplotlib.pyplot as plt
|
9 |
-
|
10 |
-
# Load the model and the scaler
|
11 |
-
model = joblib.load('best_XGB.pkl')
|
12 |
-
scaler = joblib.load('scaler.pkl') # Ensure the scaler is saved and loaded with the same scikit-learn version
|
13 |
-
cutoff = 0.42 # Custom cutoff probability
|
14 |
-
|
15 |
-
# Use TreeExplainer for XGBoost models
|
16 |
-
explainer = shap.TreeExplainer(model)
|
17 |
-
|
18 |
-
# Define the prediction function with preprocessing, scaling, and SHAP analysis
|
19 |
-
def predict_heart_attack(Gender, age, cigsPerDay, BPMeds, prevalentHyp, diabetes, totChol, sysBP, diaBP, BMI, heartRate, glucose):
|
20 |
-
# Define feature names in the same order as the training data
|
21 |
-
feature_names = ['Gender', 'age', 'cigsPerDay', 'BPMeds', 'prevalentHyp', 'diabetes', 'totChol', 'sysBP', 'diaBP', 'BMI', 'heartRate', 'glucose']
|
22 |
-
|
23 |
-
# Create a DataFrame with the correct feature names for prediction
|
24 |
-
features = pd.DataFrame([[Gender, age, cigsPerDay, BPMeds, prevalentHyp, diabetes, totChol, sysBP, diaBP, BMI, heartRate, glucose]], columns=feature_names)
|
25 |
-
|
26 |
-
# Standardize the features (scaling)
|
27 |
-
scaled_features = scaler.transform(features)
|
28 |
-
|
29 |
-
# Predict probabilities
|
30 |
-
proba = model.predict_proba(scaled_features)[:, 1] # Probability of class 1 (heart attack)
|
31 |
-
|
32 |
-
# Apply custom cutoff
|
33 |
-
if proba[0] >= cutoff:
|
34 |
-
prediction_class = 1
|
35 |
-
else:
|
36 |
-
prediction_class = 0
|
37 |
-
|
38 |
-
# Generate SHAP values for the prediction using the explainer
|
39 |
-
shap_values = explainer(features)
|
40 |
-
|
41 |
-
# Plot SHAP values
|
42 |
-
plt.figure(figsize=(8, 6))
|
43 |
-
shap.waterfall_plot(shap_values[0]) # Using the SHAP Explanation object
|
44 |
-
plt.savefig('shap_plot.png') # Save SHAP plot to a file
|
45 |
-
|
46 |
-
result = f"Predicted Probability: {proba[0]*100:.2f}%. Predicted Class with cutoff {cutoff}: {prediction_class}"
|
47 |
-
|
48 |
-
return result, 'shap_plot.png' # Return the prediction and SHAP plot
|
49 |
-
|
50 |
-
# Create the Gradio interface with preprocessing, prediction, and SHAP visualization
|
51 |
-
with gr.Blocks() as app:
|
52 |
-
with gr.Row():
|
53 |
-
with gr.Column():
|
54 |
-
Gender = gr.Radio([0, 1], label="Gender (0=Female, 1=Male)")
|
55 |
-
cigsPerDay = gr.Slider(0, 40, step=1, label="Cigarettes per Day")
|
56 |
-
prevalentHyp = gr.Radio([0, 1], label="Prevalent Hypertension (0=No, 1=Yes)")
|
57 |
-
totChol = gr.Slider(100, 400, step=1, label="Total Cholesterol in mg/dl")
|
58 |
-
diaBP = gr.Slider(60, 120, step=1, label="Diastolic/Lower BP")
|
59 |
-
heartRate = gr.Slider(50, 120, step=1, label="Heart Rate")
|
60 |
-
|
61 |
-
with gr.Column():
|
62 |
-
age = gr.Slider(20, 80, step=1, label="Age (years)")
|
63 |
-
BPMeds = gr.Radio([0, 1], label="On BP Medications (0=No, 1=Yes)")
|
64 |
-
diabetes = gr.Radio([0, 1], label="Diabetes (0=No, 1=Yes)")
|
65 |
-
sysBP = gr.Slider(90, 200, step=1, label="Systolic BP/Higher BP")
|
66 |
-
BMI = gr.Slider(15, 40, step=0.1, label="Body Mass Index (BMI) in kg/m2")
|
67 |
-
glucose = gr.Slider(50, 250, step=1, label="Fasting Glucose Level")
|
68 |
-
|
69 |
-
# Center-aligned prediction output
|
70 |
-
with gr.Row():
|
71 |
-
gr.HTML("<div style='text-align: center; width: 100%'>Heart Attack Prediction</div>")
|
72 |
-
|
73 |
-
with gr.Row():
|
74 |
-
prediction_output = gr.Textbox(label="", interactive=False, elem_id="prediction_output")
|
75 |
-
|
76 |
-
with gr.Row():
|
77 |
-
shap_plot_output = gr.Image(label="SHAP Analysis")
|
78 |
-
|
79 |
-
# Link inputs and prediction output
|
80 |
-
submit_btn = gr.Button("Submit")
|
81 |
-
submit_btn.click(fn=predict_heart_attack, inputs=[Gender, age, cigsPerDay, BPMeds, prevalentHyp, diabetes, totChol, sysBP, diaBP, BMI, heartRate, glucose], outputs=[prediction_output, shap_plot_output])
|
82 |
-
|
83 |
-
app.launch(share = True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.ipynb_checkpoints/gradio_hearttack_app_old-checkpoint.py
DELETED
@@ -1,83 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import xgboost as xgb
|
3 |
-
import joblib
|
4 |
-
import numpy as np
|
5 |
-
from sklearn.preprocessing import StandardScaler
|
6 |
-
import pandas as pd
|
7 |
-
import shap
|
8 |
-
import matplotlib.pyplot as plt
|
9 |
-
|
10 |
-
# Load the model and the scaler
|
11 |
-
model = joblib.load('best_XGB.pkl')
|
12 |
-
scaler = joblib.load('scaler.pkl') # Load the scaler that was saved during training
|
13 |
-
cutoff = 0.42 # Custom cutoff probability
|
14 |
-
|
15 |
-
# Load SHAP explainer based on your XGBoost model
|
16 |
-
explainer = shap.Explainer(model)
|
17 |
-
|
18 |
-
# Define the prediction function with preprocessing, scaling, and SHAP analysis
|
19 |
-
def predict_heart_attack(Gender, age, cigsPerDay, BPMeds, prevalentHyp, diabetes, totChol, sysBP, diaBP, BMI, heartRate, glucose):
|
20 |
-
# Define feature names in the same order as the training data
|
21 |
-
feature_names = ['Gender', 'age', 'cigsPerDay', 'BPMeds', 'prevalentHyp', 'diabetes', 'totChol', 'sysBP', 'diaBP', 'BMI', 'heartRate', 'glucose']
|
22 |
-
|
23 |
-
# Create a DataFrame with the correct feature names for prediction
|
24 |
-
features = pd.DataFrame([[Gender, age, cigsPerDay, BPMeds, prevalentHyp, diabetes, totChol, sysBP, diaBP, BMI, heartRate, glucose]], columns=feature_names)
|
25 |
-
|
26 |
-
# Standardize the features (scaling)
|
27 |
-
scaled_features = scaler.transform(features)
|
28 |
-
|
29 |
-
# Predict probabilities
|
30 |
-
proba = model.predict_proba(scaled_features)[:, 1] # Probability of class 1 (heart attack)
|
31 |
-
|
32 |
-
# Apply custom cutoff
|
33 |
-
if proba[0] >= cutoff:
|
34 |
-
prediction_class = 1
|
35 |
-
else:
|
36 |
-
prediction_class = 0
|
37 |
-
|
38 |
-
# Generate SHAP values for the prediction
|
39 |
-
shap_values = explainer(scaled_features)
|
40 |
-
|
41 |
-
# Plot SHAP values
|
42 |
-
plt.figure(figsize=(8, 6))
|
43 |
-
shap.waterfall_plot(shap_values[0])
|
44 |
-
plt.savefig('shap_plot.png') # Save SHAP plot to a file
|
45 |
-
|
46 |
-
result = f"Predicted Probability: {proba[0]*100:.2f}%. Predicted Class with cutoff {cutoff}: {prediction_class}"
|
47 |
-
|
48 |
-
return result, 'shap_plot.png' # Return the prediction and SHAP plot
|
49 |
-
|
50 |
-
# Create the Gradio interface with preprocessing, prediction, and SHAP visualization
|
51 |
-
with gr.Blocks() as app:
|
52 |
-
with gr.Row():
|
53 |
-
with gr.Column():
|
54 |
-
Gender = gr.Radio([0, 1], label="Gender (0=Female, 1=Male)")
|
55 |
-
cigsPerDay = gr.Slider(0, 40, step=1, label="Cigarettes per Day")
|
56 |
-
prevalentHyp = gr.Radio([0, 1], label="Prevalent Hypertension (0=No, 1=Yes)")
|
57 |
-
totChol = gr.Slider(100, 400, step=1, label="Total Cholesterol in mg/dl")
|
58 |
-
diaBP = gr.Slider(60, 120, step=1, label="Diastolic/Lower BP")
|
59 |
-
heartRate = gr.Slider(50, 120, step=1, label="Heart Rate")
|
60 |
-
|
61 |
-
with gr.Column():
|
62 |
-
age = gr.Slider(20, 80, step=1, label="Age (years)")
|
63 |
-
BPMeds = gr.Radio([0, 1], label="On BP Medications (0=No, 1=Yes)")
|
64 |
-
diabetes = gr.Radio([0, 1], label="Diabetes (0=No, 1=Yes)")
|
65 |
-
sysBP = gr.Slider(90, 200, step=1, label="Systolic BP/Higher BP")
|
66 |
-
BMI = gr.Slider(15, 40, step=0.1, label="Body Mass Index (weight in kg/ height in meter squared)(BMI) in kg/m2")
|
67 |
-
glucose = gr.Slider(50, 250, step=1, label="Fasting Glucose Level")
|
68 |
-
|
69 |
-
# Center-aligned prediction output
|
70 |
-
with gr.Row():
|
71 |
-
gr.HTML("<div style='text-align: center; width: 100%'>Heart Attack Prediction</div>")
|
72 |
-
|
73 |
-
with gr.Row():
|
74 |
-
prediction_output = gr.Textbox(label="", interactive=False, elem_id="prediction_output")
|
75 |
-
|
76 |
-
with gr.Row():
|
77 |
-
shap_plot_output = gr.Image(label="SHAP Analysis")
|
78 |
-
|
79 |
-
# Link inputs and prediction output
|
80 |
-
submit_btn = gr.Button("Submit")
|
81 |
-
submit_btn.click(fn=predict_heart_attack, inputs=[Gender, age, cigsPerDay, BPMeds, prevalentHyp, diabetes, totChol, sysBP, diaBP, BMI, heartRate, glucose], outputs=[prediction_output, shap_plot_output])
|
82 |
-
|
83 |
-
app.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.ipynb_checkpoints/requirements-checkpoint.txt
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
gradio==5.1.0
|
2 |
-
gradio_client==1.4.0
|
3 |
-
joblib==1.4.2
|
4 |
-
numpy==1.26.4
|
5 |
-
pandas==2.2.2
|
6 |
-
scikit-learn==1.4.2
|
7 |
-
xgboost==2.0.3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|