Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- .ipynb_checkpoints/Untitled-checkpoint.ipynb +6 -0
- .ipynb_checkpoints/gradio_hearttack_app-checkpoint.py +66 -0
- .ipynb_checkpoints/requirements-checkpoint.txt +247 -0
- README.md +2 -8
- Untitled.ipynb +67 -0
- best_XGB.pkl +3 -0
- gradio_hearttack_app.py +66 -0
- requirements.txt +6 -0
- scaler.pkl +3 -0
- xgb_classifier.pkl +3 -0
.ipynb_checkpoints/Untitled-checkpoint.ipynb
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [],
|
3 |
+
"metadata": {},
|
4 |
+
"nbformat": 4,
|
5 |
+
"nbformat_minor": 5
|
6 |
+
}
|
.ipynb_checkpoints/gradio_hearttack_app-checkpoint.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import xgboost as xgb
|
3 |
+
import joblib
|
4 |
+
import numpy as np
|
5 |
+
from sklearn.preprocessing import StandardScaler
|
6 |
+
import pandas as pd
|
7 |
+
|
8 |
+
# Load the model and the scaler
|
9 |
+
model = joblib.load('best_XGB.pkl')
|
10 |
+
scaler = joblib.load('scaler.pkl') # Load the scaler if you saved it during training
|
11 |
+
cutoff = 0.42 # Custom cutoff probability
|
12 |
+
|
13 |
+
# Define the prediction function with preprocessing and scaling
|
14 |
+
def predict_heart_attack(Gender, age, cigsPerDay, BPMeds, prevalentHyp, diabetes, totChol, sysBP, diaBP, BMI, heartRate, glucose):
|
15 |
+
# Define feature names in the same order as the training data
|
16 |
+
feature_names = ['Gender', 'age', 'cigsPerDay', 'BPMeds', 'prevalentHyp', 'diabetes', 'totChol', 'sysBP', 'diaBP', 'BMI', 'heartRate', 'glucose']
|
17 |
+
# Create a DataFrame with the correct feature names for prediction
|
18 |
+
features = pd.DataFrame([[Gender, age, cigsPerDay, BPMeds, prevalentHyp, diabetes, totChol, sysBP, diaBP, BMI, heartRate, glucose]], columns=feature_names)
|
19 |
+
|
20 |
+
# Standardize the features (scaling)
|
21 |
+
scaled_features = scaler.transform(features)
|
22 |
+
|
23 |
+
# Predict probabilities
|
24 |
+
proba = model.predict_proba(scaled_features)[:, 1] # Probability of class 1 (heart attack)
|
25 |
+
|
26 |
+
# Apply custom cutoff
|
27 |
+
if proba[0] >= cutoff:
|
28 |
+
prediction_class = 1
|
29 |
+
else:
|
30 |
+
prediction_class = 0
|
31 |
+
|
32 |
+
result = f"Predicted Probability: {proba[0]*100:.2f}%. Predicted Class with cutoff {cutoff}: {prediction_class}"
|
33 |
+
|
34 |
+
return result
|
35 |
+
|
36 |
+
# Create the Gradio interface with preprocessing and prediction logic
|
37 |
+
with gr.Blocks() as app:
|
38 |
+
with gr.Row():
|
39 |
+
with gr.Column():
|
40 |
+
Gender = gr.Radio([0, 1], label="Gender (0=Female, 1=Male)")
|
41 |
+
cigsPerDay = gr.Slider(0, 40, step=1, label="Cigarettes per Day")
|
42 |
+
prevalentHyp = gr.Radio([0, 1], label="Prevalent Hypertension (0=No, 1=Yes)")
|
43 |
+
totChol = gr.Slider(100, 400, step=1, label="Total Cholesterol in mg/dl")
|
44 |
+
diaBP = gr.Slider(60, 120, step=1, label="Diastolic/Higher BP")
|
45 |
+
heartRate = gr.Slider(50, 120, step=1, label="Heart Rate")
|
46 |
+
|
47 |
+
with gr.Column():
|
48 |
+
age = gr.Slider(20, 80, step=1, label="Age (years)")
|
49 |
+
BPMeds = gr.Radio([0, 1], label="On BP Medications (0=No, 1=Yes)")
|
50 |
+
diabetes = gr.Radio([0, 1], label="Diabetes (0=No, 1=Yes)")
|
51 |
+
sysBP = gr.Slider(90, 200, step=1, label="Systolic BP/Lower BP")
|
52 |
+
BMI = gr.Slider(15, 40, step=0.1, label="Body Mass Index (BMI) in kg/m2")
|
53 |
+
glucose = gr.Slider(50, 250, step=1, label="Fasting Glucose Level")
|
54 |
+
|
55 |
+
# Center-aligned prediction output
|
56 |
+
with gr.Row():
|
57 |
+
gr.HTML("<div style='text-align: center; width: 100%'>Heart Attack Prediction</div>")
|
58 |
+
|
59 |
+
with gr.Row():
|
60 |
+
prediction_output = gr.Textbox(label="", interactive=False, elem_id="prediction_output")
|
61 |
+
|
62 |
+
# Link inputs and prediction output
|
63 |
+
submit_btn = gr.Button("Submit")
|
64 |
+
submit_btn.click(fn=predict_heart_attack, inputs=[Gender, age, cigsPerDay, BPMeds, prevalentHyp, diabetes, totChol, sysBP, diaBP, BMI, heartRate, glucose], outputs=prediction_output)
|
65 |
+
|
66 |
+
app.launch(share = True)
|
.ipynb_checkpoints/requirements-checkpoint.txt
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==2.1.0
|
2 |
+
aiofiles==23.2.1
|
3 |
+
alembic==1.13.3
|
4 |
+
altair==5.3.0
|
5 |
+
aniso8601==9.0.1
|
6 |
+
annotated-types==0.7.0
|
7 |
+
anyio==4.6.2.post1
|
8 |
+
asn1crypto==1.5.1
|
9 |
+
asttokens==2.4.1
|
10 |
+
astunparse==1.6.3
|
11 |
+
attrs==23.2.0
|
12 |
+
Automat==22.10.0
|
13 |
+
bayesian-optimization==1.4.3
|
14 |
+
beautifulsoup4==4.12.3
|
15 |
+
blinker==1.8.2
|
16 |
+
cachetools==5.3.3
|
17 |
+
certifi==2024.2.2
|
18 |
+
cffi==1.16.0
|
19 |
+
charset-normalizer==3.3.2
|
20 |
+
chromedriver-autoinstaller==0.6.4
|
21 |
+
click==8.1.7
|
22 |
+
cloudpickle==3.1.0
|
23 |
+
colorama==0.4.6
|
24 |
+
comm==0.2.2
|
25 |
+
constantly==23.10.4
|
26 |
+
contourpy==1.2.1
|
27 |
+
convertdate==2.4.0
|
28 |
+
cryptography==43.0.0
|
29 |
+
cssselect==1.2.0
|
30 |
+
cycler==0.12.1
|
31 |
+
Cython==3.0.10
|
32 |
+
dash==2.17.0
|
33 |
+
dash-core-components==2.0.0
|
34 |
+
dash-html-components==2.0.0
|
35 |
+
dash-table==5.0.0
|
36 |
+
databricks-sdk==0.34.0
|
37 |
+
dearpygui==1.11.1
|
38 |
+
debugpy==1.8.1
|
39 |
+
decorator==5.1.1
|
40 |
+
defusedxml==0.7.1
|
41 |
+
Deprecated==1.2.14
|
42 |
+
dnspython==2.6.1
|
43 |
+
docker==7.1.0
|
44 |
+
docutils==0.21.2
|
45 |
+
et-xmlfile==1.1.0
|
46 |
+
executing==2.0.1
|
47 |
+
fakeredis==2.23.2
|
48 |
+
fastapi==0.115.2
|
49 |
+
fastjsonschema==2.19.1
|
50 |
+
ffmpy==0.4.0
|
51 |
+
filelock==3.15.4
|
52 |
+
Flask==3.0.3
|
53 |
+
flatbuffers==24.3.25
|
54 |
+
fonttools==4.51.0
|
55 |
+
frozendict==2.4.4
|
56 |
+
fsspec==2024.9.0
|
57 |
+
gast==0.5.4
|
58 |
+
gitdb==4.0.11
|
59 |
+
GitPython==3.1.43
|
60 |
+
google-auth==2.35.0
|
61 |
+
google-pasta==0.2.0
|
62 |
+
gradio==5.1.0
|
63 |
+
gradio_client==1.4.0
|
64 |
+
graphene==3.3
|
65 |
+
graphql-core==3.2.5
|
66 |
+
graphql-relay==3.2.0
|
67 |
+
graphviz==0.20.3
|
68 |
+
greenlet==3.0.3
|
69 |
+
grpcio==1.64.1
|
70 |
+
gunicorn==23.0.0
|
71 |
+
h11==0.14.0
|
72 |
+
h5py==3.11.0
|
73 |
+
holidays==0.53
|
74 |
+
html5lib==1.1
|
75 |
+
httpcore==1.0.6
|
76 |
+
httpx==0.27.2
|
77 |
+
huggingface-hub==0.25.2
|
78 |
+
hyperlink==21.0.0
|
79 |
+
idna==3.7
|
80 |
+
imbalanced-learn==0.12.4
|
81 |
+
imblearn==0.0
|
82 |
+
importlib_metadata==7.1.0
|
83 |
+
incremental==24.7.0
|
84 |
+
install==1.3.5
|
85 |
+
ipykernel==6.29.4
|
86 |
+
ipython==8.24.0
|
87 |
+
itemadapter==0.9.0
|
88 |
+
itemloaders==1.3.1
|
89 |
+
itsdangerous==2.2.0
|
90 |
+
jedi==0.19.1
|
91 |
+
Jinja2==3.1.4
|
92 |
+
jmespath==1.0.1
|
93 |
+
joblib==1.4.2
|
94 |
+
jsonschema==4.22.0
|
95 |
+
jsonschema-specifications==2023.12.1
|
96 |
+
jupyter_client==8.6.1
|
97 |
+
jupyter_core==5.7.2
|
98 |
+
keras==3.3.3
|
99 |
+
Kivy==2.3.0
|
100 |
+
Kivy-Garden==0.1.5
|
101 |
+
kiwisolver==1.4.5
|
102 |
+
libclang==18.1.1
|
103 |
+
lxml==5.2.2
|
104 |
+
Mako==1.3.5
|
105 |
+
Markdown==3.6
|
106 |
+
markdown-it-py==3.0.0
|
107 |
+
MarkupSafe==2.1.5
|
108 |
+
matplotlib==3.8.4
|
109 |
+
matplotlib-inline==0.1.7
|
110 |
+
mdurl==0.1.2
|
111 |
+
ml-dtypes==0.3.2
|
112 |
+
mlflow==2.17.0
|
113 |
+
mlflow-skinny==2.17.0
|
114 |
+
mlxtend==0.23.1
|
115 |
+
multitasking==0.0.11
|
116 |
+
namex==0.0.8
|
117 |
+
nbformat==5.10.4
|
118 |
+
nest-asyncio==1.6.0
|
119 |
+
networkx==3.3
|
120 |
+
numpy==1.26.4
|
121 |
+
nvidia-cublas-cu12==12.3.4.1
|
122 |
+
nvidia-cuda-cupti-cu12==12.3.101
|
123 |
+
nvidia-cuda-nvcc-cu12==12.3.107
|
124 |
+
nvidia-cuda-nvrtc-cu12==12.3.107
|
125 |
+
nvidia-cuda-runtime-cu12==12.3.101
|
126 |
+
nvidia-cudnn-cu12==8.9.7.29
|
127 |
+
nvidia-cufft-cu12==11.0.12.1
|
128 |
+
nvidia-curand-cu12==10.3.4.107
|
129 |
+
nvidia-cusolver-cu12==11.5.4.101
|
130 |
+
nvidia-cusparse-cu12==12.2.0.103
|
131 |
+
nvidia-nccl-cu12==2.19.3
|
132 |
+
nvidia-nvjitlink-cu12==12.3.101
|
133 |
+
openpyxl==3.1.2
|
134 |
+
opentelemetry-api==1.27.0
|
135 |
+
opentelemetry-sdk==1.27.0
|
136 |
+
opentelemetry-semantic-conventions==0.48b0
|
137 |
+
opt-einsum==3.3.0
|
138 |
+
optree==0.11.0
|
139 |
+
orjson==3.10.7
|
140 |
+
outcome==1.3.0.post0
|
141 |
+
packaging==24.0
|
142 |
+
pandas==2.2.2
|
143 |
+
parsel==1.9.1
|
144 |
+
parso==0.8.4
|
145 |
+
patsy==0.5.6
|
146 |
+
peewee==3.17.5
|
147 |
+
pexpect==4.9.0
|
148 |
+
pg8000==1.31.2
|
149 |
+
pillow==10.3.0
|
150 |
+
platformdirs==4.2.1
|
151 |
+
plotly==5.22.0
|
152 |
+
pmdarima==2.0.4
|
153 |
+
prompt-toolkit==3.0.43
|
154 |
+
Protego==0.3.1
|
155 |
+
protobuf==4.25.3
|
156 |
+
psutil==5.9.8
|
157 |
+
ptyprocess==0.7.0
|
158 |
+
pure-eval==0.2.2
|
159 |
+
pyarrow==16.1.0
|
160 |
+
pyasn1==0.6.0
|
161 |
+
pyasn1_modules==0.4.0
|
162 |
+
pycparser==2.22
|
163 |
+
pydantic==2.9.2
|
164 |
+
pydantic_core==2.23.4
|
165 |
+
pydeck==0.9.1
|
166 |
+
PyDispatcher==2.0.7
|
167 |
+
pydot==2.0.0
|
168 |
+
pydub==0.25.1
|
169 |
+
Pygments==2.18.0
|
170 |
+
PyMeeus==0.5.12
|
171 |
+
pymongo==4.7.3
|
172 |
+
pyOpenSSL==24.2.1
|
173 |
+
pyparsing==3.1.2
|
174 |
+
PySocks==1.7.1
|
175 |
+
pystan==2.19.1.1
|
176 |
+
python-dateutil==2.9.0.post0
|
177 |
+
python-dotenv==1.0.1
|
178 |
+
python-multipart==0.0.12
|
179 |
+
pytz==2024.1
|
180 |
+
PyYAML==6.0.2
|
181 |
+
pyzmq==26.0.3
|
182 |
+
queuelib==1.7.0
|
183 |
+
redis==5.0.6
|
184 |
+
referencing==0.35.1
|
185 |
+
requests==2.31.0
|
186 |
+
requests-file==2.1.0
|
187 |
+
retrying==1.3.4
|
188 |
+
rich==13.7.1
|
189 |
+
rpds-py==0.18.1
|
190 |
+
rsa==4.9
|
191 |
+
ruff==0.7.0
|
192 |
+
scikit-learn==1.4.2
|
193 |
+
scipy==1.13.0
|
194 |
+
scramp==1.4.5
|
195 |
+
Scrapy==2.11.2
|
196 |
+
seaborn==0.13.2
|
197 |
+
selenium==4.23.1
|
198 |
+
semantic-version==2.10.0
|
199 |
+
service-identity==24.1.0
|
200 |
+
shellingham==1.5.4
|
201 |
+
six==1.16.0
|
202 |
+
smmap==5.0.1
|
203 |
+
sniffio==1.3.1
|
204 |
+
sortedcontainers==2.4.0
|
205 |
+
soupsieve==2.5
|
206 |
+
SQLAlchemy==2.0.31
|
207 |
+
sqlparse==0.5.1
|
208 |
+
stack-data==0.6.3
|
209 |
+
starlette==0.40.0
|
210 |
+
statsmodels==0.14.2
|
211 |
+
streamlit==1.36.0
|
212 |
+
tenacity==8.3.0
|
213 |
+
tensorboard==2.17.1
|
214 |
+
tensorboard-data-server==0.7.2
|
215 |
+
tensorflow==2.17.0
|
216 |
+
tensorflow-io-gcs-filesystem==0.37.0
|
217 |
+
termcolor==2.4.0
|
218 |
+
threadpoolctl==3.5.0
|
219 |
+
tldextract==5.1.2
|
220 |
+
toml==0.10.2
|
221 |
+
tomlkit==0.12.0
|
222 |
+
toolz==0.12.1
|
223 |
+
tornado==6.4
|
224 |
+
tqdm==4.66.5
|
225 |
+
traitlets==5.14.3
|
226 |
+
trio==0.26.0
|
227 |
+
trio-websocket==0.11.1
|
228 |
+
Twisted==24.3.0
|
229 |
+
typer==0.12.5
|
230 |
+
typing_extensions==4.11.0
|
231 |
+
tzdata==2024.1
|
232 |
+
urllib3==2.2.1
|
233 |
+
uvicorn==0.32.0
|
234 |
+
w3lib==2.2.1
|
235 |
+
watchdog==4.0.1
|
236 |
+
wcwidth==0.2.13
|
237 |
+
webdriver-manager==4.0.2
|
238 |
+
webencodings==0.5.1
|
239 |
+
websocket-client==1.8.0
|
240 |
+
websockets==12.0
|
241 |
+
Werkzeug==3.0.3
|
242 |
+
wrapt==1.16.0
|
243 |
+
wsproto==1.2.0
|
244 |
+
xgboost==2.0.3
|
245 |
+
yfinance==0.2.40
|
246 |
+
zipp==3.19.0
|
247 |
+
zope.interface==6.4.post2
|
README.md
CHANGED
@@ -1,12 +1,6 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
|
4 |
-
colorFrom: indigo
|
5 |
-
colorTo: green
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.1.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: gradio_app
|
3 |
+
app_file: gradio_hearttack_app.py
|
|
|
|
|
4 |
sdk: gradio
|
5 |
sdk_version: 5.1.0
|
|
|
|
|
6 |
---
|
|
|
|
Untitled.ipynb
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "b1110063-e160-456d-ae0b-80d9cae3b8a5",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stderr",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"/home/ecube/basicds_py311/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
14 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
15 |
+
]
|
16 |
+
}
|
17 |
+
],
|
18 |
+
"source": [
|
19 |
+
"import gradio as gr\n",
|
20 |
+
"import xgboost as xgb\n",
|
21 |
+
"import joblib\n",
|
22 |
+
"import numpy as np\n",
|
23 |
+
"from sklearn.preprocessing import StandardScaler\n",
|
24 |
+
"import pandas as pd"
|
25 |
+
]
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"cell_type": "code",
|
29 |
+
"execution_count": 2,
|
30 |
+
"id": "5e2655ee-1663-44f1-b05c-708b32c23e6a",
|
31 |
+
"metadata": {},
|
32 |
+
"outputs": [],
|
33 |
+
"source": [
|
34 |
+
"!pip freeze >> requirements.txt"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "code",
|
39 |
+
"execution_count": null,
|
40 |
+
"id": "c71ec40a-634c-4735-bba9-31da888e3a5b",
|
41 |
+
"metadata": {},
|
42 |
+
"outputs": [],
|
43 |
+
"source": []
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"metadata": {
|
47 |
+
"kernelspec": {
|
48 |
+
"display_name": "basicds_py311",
|
49 |
+
"language": "python",
|
50 |
+
"name": "basicds_py311"
|
51 |
+
},
|
52 |
+
"language_info": {
|
53 |
+
"codemirror_mode": {
|
54 |
+
"name": "ipython",
|
55 |
+
"version": 3
|
56 |
+
},
|
57 |
+
"file_extension": ".py",
|
58 |
+
"mimetype": "text/x-python",
|
59 |
+
"name": "python",
|
60 |
+
"nbconvert_exporter": "python",
|
61 |
+
"pygments_lexer": "ipython3",
|
62 |
+
"version": "3.11.5"
|
63 |
+
}
|
64 |
+
},
|
65 |
+
"nbformat": 4,
|
66 |
+
"nbformat_minor": 5
|
67 |
+
}
|
best_XGB.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d5422417966b1cc081d0b6e9772e6cee262ee72f203853be4a28d53859fbbcf
|
3 |
+
size 1347623
|
gradio_hearttack_app.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import xgboost as xgb
|
3 |
+
import joblib
|
4 |
+
import numpy as np
|
5 |
+
from sklearn.preprocessing import StandardScaler
|
6 |
+
import pandas as pd
|
7 |
+
|
8 |
+
# Load the model and the scaler
|
9 |
+
model = joblib.load('best_XGB.pkl')
|
10 |
+
scaler = joblib.load('scaler.pkl') # Load the scaler if you saved it during training
|
11 |
+
cutoff = 0.42 # Custom cutoff probability
|
12 |
+
|
13 |
+
# Define the prediction function with preprocessing and scaling
|
14 |
+
def predict_heart_attack(Gender, age, cigsPerDay, BPMeds, prevalentHyp, diabetes, totChol, sysBP, diaBP, BMI, heartRate, glucose):
|
15 |
+
# Define feature names in the same order as the training data
|
16 |
+
feature_names = ['Gender', 'age', 'cigsPerDay', 'BPMeds', 'prevalentHyp', 'diabetes', 'totChol', 'sysBP', 'diaBP', 'BMI', 'heartRate', 'glucose']
|
17 |
+
# Create a DataFrame with the correct feature names for prediction
|
18 |
+
features = pd.DataFrame([[Gender, age, cigsPerDay, BPMeds, prevalentHyp, diabetes, totChol, sysBP, diaBP, BMI, heartRate, glucose]], columns=feature_names)
|
19 |
+
|
20 |
+
# Standardize the features (scaling)
|
21 |
+
scaled_features = scaler.transform(features)
|
22 |
+
|
23 |
+
# Predict probabilities
|
24 |
+
proba = model.predict_proba(scaled_features)[:, 1] # Probability of class 1 (heart attack)
|
25 |
+
|
26 |
+
# Apply custom cutoff
|
27 |
+
if proba[0] >= cutoff:
|
28 |
+
prediction_class = 1
|
29 |
+
else:
|
30 |
+
prediction_class = 0
|
31 |
+
|
32 |
+
result = f"Predicted Probability: {proba[0]*100:.2f}%. Predicted Class with cutoff {cutoff}: {prediction_class}"
|
33 |
+
|
34 |
+
return result
|
35 |
+
|
36 |
+
# Create the Gradio interface with preprocessing and prediction logic
|
37 |
+
with gr.Blocks() as app:
|
38 |
+
with gr.Row():
|
39 |
+
with gr.Column():
|
40 |
+
Gender = gr.Radio([0, 1], label="Gender (0=Female, 1=Male)")
|
41 |
+
cigsPerDay = gr.Slider(0, 40, step=1, label="Cigarettes per Day")
|
42 |
+
prevalentHyp = gr.Radio([0, 1], label="Prevalent Hypertension (0=No, 1=Yes)")
|
43 |
+
totChol = gr.Slider(100, 400, step=1, label="Total Cholesterol in mg/dl")
|
44 |
+
diaBP = gr.Slider(60, 120, step=1, label="Diastolic/Higher BP")
|
45 |
+
heartRate = gr.Slider(50, 120, step=1, label="Heart Rate")
|
46 |
+
|
47 |
+
with gr.Column():
|
48 |
+
age = gr.Slider(20, 80, step=1, label="Age (years)")
|
49 |
+
BPMeds = gr.Radio([0, 1], label="On BP Medications (0=No, 1=Yes)")
|
50 |
+
diabetes = gr.Radio([0, 1], label="Diabetes (0=No, 1=Yes)")
|
51 |
+
sysBP = gr.Slider(90, 200, step=1, label="Systolic BP/Lower BP")
|
52 |
+
BMI = gr.Slider(15, 40, step=0.1, label="Body Mass Index (BMI) in kg/m2")
|
53 |
+
glucose = gr.Slider(50, 250, step=1, label="Fasting Glucose Level")
|
54 |
+
|
55 |
+
# Center-aligned prediction output
|
56 |
+
with gr.Row():
|
57 |
+
gr.HTML("<div style='text-align: center; width: 100%'>Heart Attack Prediction</div>")
|
58 |
+
|
59 |
+
with gr.Row():
|
60 |
+
prediction_output = gr.Textbox(label="", interactive=False, elem_id="prediction_output")
|
61 |
+
|
62 |
+
# Link inputs and prediction output
|
63 |
+
submit_btn = gr.Button("Submit")
|
64 |
+
submit_btn.click(fn=predict_heart_attack, inputs=[Gender, age, cigsPerDay, BPMeds, prevalentHyp, diabetes, totChol, sysBP, diaBP, BMI, heartRate, glucose], outputs=prediction_output)
|
65 |
+
|
66 |
+
app.launch(share = True)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==5.1.0
|
2 |
+
gradio_client==1.4.0
|
3 |
+
joblib==1.4.2
|
4 |
+
numpy==1.26.4
|
5 |
+
pandas
|
6 |
+
scikit-learn==1.4.2
|
scaler.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1247693b05d68aa6ffe3aeb3833d11bb9059977bccee21af172a81aa04e9464f
|
3 |
+
size 941
|
xgb_classifier.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09e1d72186e5696767a3a3bbb7343fe43bf76d2146ea568a21a4ce4d1339d2bf
|
3 |
+
size 1329811
|