Spaces:
Sleeping
Sleeping
app fix
Browse files
app.py
CHANGED
@@ -15,25 +15,8 @@ def get_model(model_name, model_path):
|
|
15 |
return model, tokenizer
|
16 |
|
17 |
|
18 |
-
def predict(text, model, tokenizer, n_beams=5, temperature=2.5, top_p=0.8, length_of_generated=300):
|
19 |
-
# text += '\n'
|
20 |
-
input_ids = tokenizer.encode(text, return_tensors="pt")
|
21 |
-
length_of_prompt = len(input_ids[0])
|
22 |
-
with torch.no_grad():
|
23 |
-
out = model.generate(input_ids,
|
24 |
-
do_sample=True,
|
25 |
-
num_beams=n_beams,
|
26 |
-
temperature=temperature,
|
27 |
-
top_p=top_p,
|
28 |
-
max_length=length_of_prompt + length_of_generated,
|
29 |
-
eos_token_id=tokenizer.eos_token_id
|
30 |
-
)
|
31 |
-
|
32 |
-
generated = list(map(tokenizer.decode, out))[0]
|
33 |
-
return generated.replace('\n[EOS]\n', '')
|
34 |
-
|
35 |
def predict_gpt(text, model, tokenizer,):
|
36 |
-
input_ids = tokenizer.encode(text, return_tensors="pt")
|
37 |
with torch.no_grad():
|
38 |
out = model.generate(input_ids,
|
39 |
do_sample=True,
|
@@ -53,7 +36,7 @@ def predict_gpt(text, model, tokenizer,):
|
|
53 |
return generated_text
|
54 |
|
55 |
def predict_t5(text, model, tokenizer,):
|
56 |
-
input_ids = tokenizer.encode(text, return_tensors="pt")
|
57 |
with torch.no_grad():
|
58 |
out = model.generate(input_ids,
|
59 |
do_sample=True,
|
|
|
15 |
return model, tokenizer
|
16 |
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
def predict_gpt(text, model, tokenizer,):
|
19 |
+
input_ids = tokenizer.encode(text, return_tensors="pt")
|
20 |
with torch.no_grad():
|
21 |
out = model.generate(input_ids,
|
22 |
do_sample=True,
|
|
|
36 |
return generated_text
|
37 |
|
38 |
def predict_t5(text, model, tokenizer,):
|
39 |
+
input_ids = tokenizer.encode(text, return_tensors="pt")
|
40 |
with torch.no_grad():
|
41 |
out = model.generate(input_ids,
|
42 |
do_sample=True,
|