Spaces:
Sleeping
Sleeping
File size: 2,563 Bytes
b8e4c73 6370dc6 b8e4c73 6370dc6 b8e4c73 6370dc6 b8e4c73 6370dc6 b8e4c73 6370dc6 b8e4c73 3bd8299 5afe1da 3bd8299 5afe1da 3bd8299 5afe1da 3bd8299 5afe1da 3bd8299 5afe1da 6370dc6 b8e4c73 6370dc6 9f412c6 6370dc6 5afe1da b8e4c73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
# All imports
import streamlit as st
import tensorflow as tf
from PIL import Image
import io
import numpy as np
def load_image():
uploaded_file = st.file_uploader(label='Pick an image to test')
if uploaded_file is not None:
image_data = uploaded_file.getvalue()
st.image(image_data)
img = Image.open(io.BytesIO(image_data))
img = img.resize((224,224))
return img
else:
return None
def load_model():
model_name = 'Model/model.h5'
model = tf.keras.models.load_model(model_name)
return model
def load_labels():
with open('Oxford-102_Flower_dataset_labels.txt', 'r') as file:
data = file.read().splitlines()
return data
def predict(model, labels, img):
img_array = tf.keras.preprocessing.image.img_to_array(img)
img_array = tf.expand_dims(img_array, 0) # Create a batch
prediction = model.predict(img_array)
predicted_class = np.argmax(prediction[0], axis=-1)
flower = labels[predicted_class]
closeness = np.round(prediction[0][predicted_class] * 100, 2)
return flower, closeness
def main():
st.title('Flower Classification Using Deep Learning ')
st.markdown('### NAME:')
st.write('TOLULOPE')
st.markdown('### CLASS:')
st.write('HND2')
st.markdown('### LEVEL:')
st.write('400L')
st.markdown('---')
st.write("This is a demo of an image classification model trained on the Oxford Flower Dataset. The Oxford Flower Dataset, consisting of 102 flower categories. The images have large scale, pose and light variations. In addition, there are categories that have large variations within the category and several very similar categories. The dataset is visualized using isomap with shape and colour features. Link to the dataset is available @ https://www.kaggle.com/datasets/yousefmohamed20/oxford-102-flower-dataset.. . To test the model, upload an image of a flower and click the 'Run on image' button.")
st.markdown('---')
model = load_model()
labels = load_labels()
image = load_image()
result = st.button('Run on image')
if result and image is not None:
st.markdown('**_Calculating results..._**')
flower, closeness = predict(model, labels, image)
st.markdown(f'<h4 style="color:blue;">Flower Type: <span style="color:black;">{flower}</span></h4>', unsafe_allow_html=True)
st.markdown(f'<h4 style="color:green;">Closeness: <span style="color:black;">{closeness}%</span></h4>', unsafe_allow_html=True)
if __name__ == '__main__':
main()
|